hBP-Fi: Contactless Blood Pressure Monitoring via
Deep-Analyzed Hemodynamics

Yetong Cao*  Shujie Zhang!

Fan Li*  Zhe Chent  Jun Luof

* School of Computer Science and Technology, Beijing Institute of Technology, China
t School of Computer Science and Engineering, Nanyang Technological University, Singapore
t Intelligent Networking and Computing Research Center and School of Computer Science, Fudan University, China
Email: yetongcao@bit.edu.cn, shujie002@ntu.edu.sg, fli@bit.edu.cn, zhechen@fudan.edu.cn, junluo@ntu.edu.sg

Abstract—Blood pressure (BP) measurement is significant to
the assessment of many dangerous health conditions. Apart
from invasively inserting catheters into arteries, non-invasive
approaches typically rely on wearing devices on specific skin
areas with consistent pressure. However, this can be uncomfort-
able and unsuitable for certain individuals, and the accuracy of
these methods may significantly decrease due to improper device
placements and wearing states. Recently, contactless methods
leveraging RF technology have emerged as a potential alternative.
However, these methods suffer from the drawback of overfitting
deep learning (DL) models without a sound physiological basis,
resulting in a lack of clear explanations for their outputs. Conse-
quently, such limitations lead to skepticism and distrust among
medical experts. In this paper, we propose ZBP-Fi, a contactless
BP measurement system driven by hemodynamics acquired via
RF sensing. In addition to its contactless convenience, ZBP-Fi
is superior to other RF sensing approaches in i) grounding
on hemodynamics as the key physical process of heart-pulse
activities, ii) exploiting beam-steerable RF devices to achieve a
super-resolution scan on the fine-grained pulse activities along
arm arteries, and iii) ensuring the trustworthiness of system
outputs via an explainable (decision-understandable) DL model.
Extensive experiments with 35 subjects demonstrate that ABP-Fi
can achieve the error of -2.05+6.83 mmHg and 1.994+6.30 mmHg
for monitoring systolic and diastolic blood pressures, respectively.

I. INTRODUCTION

Hypertension, the leading risk factor for death, affects nearly
half of the adults in the United States [1] and over 1.3 billion
people globally [2]. As a silent condition that often develops
over years without symptoms, it poses serious health risks
such as heart attack, stroke, chronic heart failure, and kidney
disease [1]. Therefore, regular monitoring of blood pressure
(BP) is crucial for timely diagnosis [3]. Unlike serious hospital
settings, regular BP measurements are normally non-invasive,
obtained by strapping inflatable cuffs and sensors on arm [4],
chest [5], wrist [6], [7], and ears [8], [9]. However, these
methods require consistent application of pressure to specific
skin areas, making them uncomfortable and unsuitable for
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Fig. 1. The concept of #BP-Fi: a path from hemodynamics understanding
towards RF (micro-)motion sensing and explainable DL inference.

individuals with sensitive or injured skin. Besides, the strict
contact requirements limit their widespread adoption in daily
life, particularly due to inaccuracies in BP measurements
resulting from variable device placements and wearing states.

Recent advancements in contactless sensing [10]-[14] bring
new hope to alleviate these limitations, particularly through
the use of radio-frequency (RF) sensing devices with wide
bandwidth and high spatial resolution. Existing systems [15],
[16] sense chest/arm motions as an externally observable
biomarker and map the morphological features of the captured
waveforms to BP via deep learning (DL). However, the learned
mapping between morphological features and BP may not be
causal due to the lack of a physiological basis. Moreover, DL
models’ failure to explain specific outputs has hindered their
practical applicability in decision-sensitive medical contexts.
Consequently, it is imperative to explore alternative approaches
with sound physiological bases and enhanced explainability.

To this end, we present ZBP-Fi to associate, for the first
time, advanced RF sensing and DL inference with a sound
physiological basis; it leverages motion-sensitive RF signals
to capture the BP-encoded hemodynamics of pulses tran-
siting along arm arteries. As shown in Fig. 1, as blood
flows through, the arm arteries undergo compliance changes
indicating changes in BP [19], resulting in variable pulse
waveforms depending on the measurement site. Consequently,
the varying pulse waveforms measured at different sites allow
for deriving a BP-specific transfer function (BTF); inferring
BP becomes possible as the BTF, describing how compliance
varies along arteries, is causally related to BP. Specifically,
hBP-Fi carefully steers RF beams to scan an arm, aiming
to capture varying pulse waveforms along the arm. It then



TABLE I
COMPARISONS AMONG NON-INVASIVE BP MEASUREMENT METHODS, WITH THE ADVANTAGES OF h/BP-FI HIGHLIGHTED.

‘Work eBP [8] Glabella [9] Crisp-BP [6] Fan et al. [17] Ebrahim ef al. [18] mmBP [16] hBP-Fi
Sensing modality Oscillatory PPG PPG Vision RF RF RF
Non-physical contact X X X v X v v
Void of extra hardware X X v v X v v
Output explainability v X X X X X v
Physiological basis v v v v X X v
SBP mean/std (mmHg) 1.8/7.2 +10 1.67/7.31 8.42/8.81 <10 0.46/4.87 -2.05/6.83
DBP mean/std (mmHg) -3.1/7.9 N/A 0.86/6.55 12.34/7.10 N/A 1.13/5.14 1.99/6.30

incorporates an explainable DL pipeline to derive the BTF
that in turn leads to BP estimation in a decision-understandable
manner. In Table I, we highlight the advantages of #BP-Fi over
contemporary non-invasive BP measurement technologies.

Realizing this vision of hBP-Fi faces a few critical chal-
lenges. First of all, how RF signals respond to hemodynamics
is unclear; one needs to build a solid physiological basis to
connect them. Second, capturing high-quality pulse waveforms
from multiple sites along an arm is crucial for accurate
hemodynamics profiling. However, RF sensing devices such
as mmWave radar [20] face limitations in pinpointing specific
sites due to signal mixing from neighboring regions at the
receiver, hindering direct support for hemodynamics profiling.
Last but not least, the impact of time and temperature varia-
tions on BP estimation based on BTF highlights the need to
employ DL technology for accurate monitoring in real-world
environments. However, ensuring explainable decision-making
processes to gain trust from medical applications is a less-
explored research domain that lacks highly accurate solutions.

To address these challenges, we first carefully study the
hemodynamics along arm arteries to figure out how the
changes of RF-sensed pulse waveforms along the arm encode
BP information. In particular, we characterize the relation
between BP and varying pulse waveforms as a modified tube-
load model [21]. We then specifically design a beam-steerable
RF sensing scheme: though every single snapshot during this
scanning process cannot focus on a particular site, our super-
resolution scheme synthesizes all signals obtained during the
whole scanning process to obtain a series of high-quality
pulse waveforms along the arm. Finally, a DL pipeline is
proposed to process pulse waveforms. Our innovative network
construction and training with BTF constraints enable #ZBP-
Fi to provide explanations for specific BP outputs, which
ensures the reliability of the BP results. We highlight our main
contributions as follows:

« Built up on a solid physiological basis, we propose hBP-
Fi as the first contactless BP inference system leveraging
explainable deep-analyzed hemodynamics.

« We thoroughly study the hemodynamics and reveal the
intrinsic relation between arterial compliance and under-
lying BP variations. We introduce BTF to characterize
this relation for the first time, with parameters specifically
designed to be amenable to beam-steerable RF sensing.

o We propose a beam scan RF sensing scheme to obtain

high-quality pulse waveforms along the arm; it performs
super-resolution recovery of waveforms with a granularity
finer than the minimum angular separation.

« We develop an explainable DL pipeline for BP inference,
where the structure and searching space of loss function
are constrained by BTF, ensuring explainability of the
decision-making process and the reliability of the results.

o We thoroughly evaluated hBP-Fi via extensive experi-
ments. The results demonstrate that #ZBP-Fi has an aver-
age error of -2.05£6.83 mmHg and 1.994+6.30 mmHg for
systolic blood pressure (SBP) and diastolic blood pres-
sure (DBP), respectively, which is within the acceptable
range regulated by the FDA’s AAMI protocol [22].

II. BACKGROUND AND MOTIVATIONS
A. Contact-based BP Measurement

While the gold standard BP is achieved by intravascular
catheterization in an invasive manner, oscillometry-based so-
lutions, primarily utilizing inflatable arm cuffs to compress the
vessels, are commonly adopted due to their accessibility and
noninvasiveness [4]. Nevertheless, cuff-based solutions pose
certain limitations: i) the cuff’s blockage of blood flow during
measurement can cause discomfort, potentially resulting in
tissue hypoxia, and are unsuitable for some individuals [23],
ii) the performance is sensitive to cuff types and placements,
making it challenging to achieve the desired accuracy in
real-world scenarios. Despite efforts made by eBP [8] and
HeartGuide [7] to mitigate discomfort through the integra-
tion of inflatable cuffs into earbuds and smartwatches, their
performances remain sensitive to device-wearing states and
placements, thereby impeding accurate BP monitoring.

With the advances in wearables and mobile devices, later ef-
forts have leveraged easily accessible physiological signals ac-
quired by these devices to infer BP. They are mainly based on
the famous physiological fact that pulse wave velocity (PWV)
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Fig. 2. Wearable sensors measure PTT and RWTT based on physiological
signals from multiple sites. Curves are adapted from [5], [6], [9], [24].



is intrinsically related to BP variation [9], by PWV = ¢/PTT
where PTT refers to the pulse transit time, the traveling time
of pulse waves between two arterial sites, and ¢ denotes the
distance in-between; here pulse is a shortened form of blood
volume pulse. This actually converts BP measurements to BP
inference via PTT measurements. Fig. 2 shows examples of
measuring PTT from peak delay between two physiological
signal pairs, such as ECG-PPG [5], SCG-PPG [24], and PPG-
PPG [9]. However, these approaches are both inconvenient
and unreliable, because they need to attach multiple wearable
sensors to a body and their performances are highly dependent
on sensor placements: tiny changes on the sites of any sensors
can cause dramatic performance degradation [16]. Recently,
Crisp-BP [6] exploits reflected wave transit time (RWTT)
readily obtainable by a wrist PPG sensor to replace PTT for
inferring BP, yet it is still sensitive to wearing states due to
its wearable nature.

B. How About Contactless Solutions?

Given the drawbacks of contact-based solutions, such as
inconvenience, discomfort for some individuals, and sensitivity
to device-wearing states and placements, it is natural to con-
sider resorting to contactless solutions. We first briefly discuss
a few typical attempts, and then turn our focus to studying the
major obstacle preventing them from getting practical.

1) Why Existing Contactless Fails: Early attempts centered
on using cameras to deduce PTT from remote-PPG and in turn
infer BP [17], [25], [26]. However, camera-based solutions
require strict recording conditions, such as adequate lighting
and the entire view of a face. Besides, the incurred privacy
concerns further limit their wide adoption. Subsequently, RF-
sensing is employed in combination with wearable ECG or
PPG sensors to obtain PTT and infer BP [18], [27], lever-
aging the advantages of less strict recording conditions and
mitigating privacy concerns. However, precisely synchronizing
these sensors (of very different modalities) can be extremely
challenging. Moreover, coarse-grained RF sensing fails to
isolate specific measurement sites and instead captures mixed
signals from neighboring regions [16]. This limitation results
in inaccurate BP estimations when applying the site-sensitive
PTT-based solution, as demonstrated in Sec. II-B2).

Given the challenges encountered by the above approaches,
recent RF-based contactless BP solutions have resorted to a
black box DL pipeline [15], [16]. These solutions utilize RF
sensing to extract pulse activities as a biomarker and employ
DL models to map their morphological features to BP in a
brute-force manner. While they report impressive BP accuracy,
the non-causal mapping between morphological features and
certain BP values lacks a physiological basis, raising concerns
about their reliability and the potential for biased BP esti-
mates resulting from DL overfitting. Moreover, the lack of
explainability in black box DL models impedes the adoption
of these systems in decision-sensitive healthcare scenarios,
as it hinders the understanding of how and why certain BP
values are determined, consequently further undermining the
trustworthiness of BP estimates.

Time

Fig. 3. In-vitro blood circulation simulator to study PTT measured by RF
sensing technology.
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Fig. 4. Comparing measured PTTs with true PTTs for different Tx-Rx pairs.

2) Acquiring Pulse Activities by Scan: Recent advances in
RF sensing have equipped devices (e.g., mmWave radar) with
antenna arrays; they allow RF radiation beams to be steered
towards certain directions. A natural yet novel idea would be
leveraging the beam-steerable RF sensing to extract pulses
waveforms from two specific directions using the same device
to derive PTT: This is superior to existing PTT-enabled RF
sensing proposals that require extra sensing modalities and
cumbersome synchronization among these distinct modalities.

We build a blood circulation simulator as shown in Fig. 3;
it uses a peristaltic pump [28] to emulate how blood flows
through blood vessels at different PWVs. | An mmWave
radar [20] is adopted to perform beam-steerable sensing. We
in particular pick two measurement sites and measure the time
delay between the pulse waveforms extracted from these two
sites (elaborations on how to obtain pulse waveforms are given
in Sec. III-B2). The true PTT is computed as the ratio of the
distance between the measurement sites and the known PWV
specified by the pump. Fig. 4 compares the measured PTTs
with the true ones under 4, 6, and 8 antenna pairs. Although
the results do not appear to be perfect, more antenna pairs
evidently yield better results, because the angle resolution
of the radar is determined by the number of transmitting
antenna (Tx) and receiving antenna (Rx) pairs. Nonetheless,
the estimation error is still excessive even with 8 Tx-Rx pairs,
indicating a deficit of such a straightforward usage of beam-
steerable sensing. Motivated by the above observations, we set
out to establish a new mathematical model that reveals the link
between pulse activities and BP in Sec. III-A, and to design an
effective beam-steerable sensing scheme for achieving super-
resolution extraction of pulse waveforms in Sec. III-B.

I'we adjust the PWVs within the normal PWYV range of [3,9] m/s [29].
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Fig. 5. System architecture of #BP-Fi.

III. SYSTEM DESIGN

As illustrated in Fig. 5, hnBP-Fi is mainly composed of three
components: Hemodynamics Modeling, Waveform Collecting,
and BP Inference. Since vascular compliance (elastic modulus)
is affected by BP, Hemodynamics Modeling aims to associate
the pulse activity captured by RF sensing with the implicit
compliance property. To this end, a tube-load model is adopted
to describe the hemodynamics, which leads to a novel map-
ping, BTE, that relates changes in compliance to those in the
pulse waveforms propagating through different measurement
sites. With this theoretical basis, hBP-Fi leverages an mmWave
radar in Waveform Collecting to achieve adequate resolution
for pulse activity sensing by extracting pulse waveforms out
of phase changes in RF reflections along the arm. Finally, BP
Inference inputs BTFs measured from the Waveform Collecting
to an explainable DL pipeline based on the DRCN to reliably
infer BP. In particular, the system incorporates innovative
design in the model’s structure and the searching space of the
loss function, enabling users to understand and interpret the
decision-making process of the DL model in deriving certain
BP measurements. For the actual measurement (also shown in
Fig. 5), we require the subject to i) stretch his/her arm on a
table, ii) maintain minimal body movement, iii) keep a fixed
distance (e.g., 5S0cm) from the radar (on the same table) whose
field of view (FoV) sufficiently covers the whole arm.

A. Hemodynamics Modeling via BTF

Hemodynamics refers to the process of how blood flows
through the blood vessels. As the heart beats, it pumps blood
through the circulatory system formed by blood vessels, gener-
ating pressure to push the elastic vessel wall outwards, which
is then bounced back after the blood passes through. Among
all physiological indicators of hemodynamics, BP indicates the
radial pressure caused by the blood flow, whose continuous
representation is pulse activities.

Herein, we explain the hemodynamics based on the widely
recognized tube-load model [21] with additional accounting
for BP-dependent arterial compliance and peripheral wave
reflection [19]. As shown in Fig. 6(a), the blood vessel is
modeled as a single uniform frictionless tube that has BP-
related characteristic impedance of Z. = /1/C(p) to support
blood travel from the start to the end, where 7 is the constant
inertance of the tube, C'(p) is the BP-related compliance (elas-
tic modulus) of the tube, and p represents the BP. According
to the Young’s modulus, the relationship between compliance
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(a) The tube-load model of blood vessel.

(b) An instance.
Fig. 6. Hemodynamics modeling (a) and an instance of modeling BTF at
different sites (b).

of the elastic tube and the distending pressure p is described
by the expression [19]:

C(p) = Coe™ ", (1)

where « is the vessel parameter and C is Young’s modulus for
zero arterial pressure. Their values are constant and subject-
specific, as widely validated by existing studies [30]. Be-
sides, the peripheral vessels are modeled as the three-element
Windkessel terminal load [31], which has an impedance Z;
determined by i) characteristic impedance Z., ii) peripheral
resistance exerted by the arterioles Ry, and iii) compliance of
the distal arteries Ci, via Zy = Z. + Ry /(1 + R:C}).

We denote the pulse waves at the tube inler in time ¢ as
Pi(t) and those at the tube outlet as P,(t). They consist of
forward and backward waves, both traveling with delay and
distortion characterized by a wave propagation function ¢(p)
via P;*(t) = e?P!P7(t) and P (t) = e®PEPS (1) [21],
where the superscripts — and < represent the forward and
backward components, respectively, and ¢ is the length of
the tube. Moreover, the backward waves are generated by
the forward ones encountering a change in impedance at the
terminal load, leading to the following relation:

as N
a gt ®, @)
where s is the Laplace variable, a = 1/2Z.C;, and b =
a + 1/R:C;. Using Eqn. (2) and based on that P,(¢) and
Pi(t) are the sum of forward and backward waves, the relation

between P,(t) and P,(¢) can be modeled by a BP-specific
transfer function (BTF) T';_,, as:

Pr(t) =

o

wP (1) =

140

Po(t) = Fi—>OPi(t) = e¢(p)g _|_ €_¢(p)E\IJ l(t) (3)

Considering that the tube is frictionless, ¢(p) can be reduced
nC(p) via the Taylor series expansion. Altogether, the
BTF can be presented as:

2+ (b+a)s
(52 + bs)etVCW) 4 gge=tVnCr) ’

where polynomial coefficients a, b, and constants related to
C(p) (i.e., n, Cy, @) can be readily determined by population-
based normative values or subject-specific least-squares for-
mulation. Finally, we conclude that the BTF is the function
of only ¢ and p. Ideally, given observed P,(t) and Pi(t),

4)

Fi%o =



one can first measure the BTF via I'i, = P,(t)P ().
Then the BP value p can be determined by Eqn. (4) in
the least-squares sense, with prior knowledge of the precise
artery length between the two sites, i.e., £. It is worth noting
that the above relation still holds when P;(t) and P,(t) are
superimposed by multiple pulses, which is equivalent to the
parallel connection of multiple tubes with loads [32].

In practice, precise measurement of ¢ is the major obstacle
to solving BTF and thus inferring BP. Instead of dwelling
on perfecting the estimation of ¢, we relate BP and BTF
via optimization. We first consider three pulse waveforms
measured at different locations, as shown in Fig. 6(b), de-
noted by Py(t), Pi(t), and Py(¢). According to Eqn.(3), we
have Pl(t) = F0_>1(®)P0(t) and Pg(t) = FO%Q(@)PO(t),
where © £ {p, ly_,1,0y_2} defines the parameter set. Since
To1(0) P (t) = Py(t) = Ty, Pa(t), we tune the param-
eters of © by minimizing the following:

min J(©) = min [To-2(©) " Pa(t) = Toa(©) ' Pr(t)]|,. (5)

Several mathematical relations can be incorporated to narrow
the searching space for the optimal ©. Under our context,
RF sensing may help infer the radial range and bearing
between the RF device and the measurement sites, which
in turn leads to estimations of ¢g_.1, £9_.9, and f1_,o via
trigonometry operations. More importantly, Eqn. (5) can be
extended to accommodate an arbitrary number n of pulse
waveforms measured at different locations, further helping
constrain the parameter set © £ {p, o1, %92, ..., Lo—n } and
potentially yielding a more accurate estimation to BP p. In
the following, we shall design #ZBP-Fi to capture fine-grained
pulse waveforms from as many well-distinguishable skin sites
as possible, so as to achieve accurate BP inference.

B. RF Pulse Waveform Collection

hBP-Fi employs steerable RF beams to scan the skin vibra-
tions induced by pulse along human arm. Particularly, steer-
able beam patterns are employed in a time-division manner,
enabling the RF beam to scan successive directions with a
us-level delay to capture spatially separated pulse waveforms
along an arm. In the following, we first discuss how to
achieve a super-resolution beam scan, then we elaborate on
the waveform extraction scheme.

1) Super-Resolution Beam Scan: RF signals transmitted
and received by mmWave radars (with MIMO antennas) are
often directional, achieved by beamforming at both transmitter
(Tx) and receiver (Rx) sides. Whereas existing RF human
sensing technologies mostly place a subject at zero-degree
bearing to ensure sufficient signal quality, our analysis in
Sec. III-A shows that capturing pulse waveforms at different
arm sites with beam scan is possible, but the angle-resolution
achieved by the default beamforming scheme is highly inade-
quate. Therefore, we need to substantially improve the angle-
resolution for hBP-Fi.

We consider a uniform linear array (ULA) with N Tx
antennas spaced by dix and M Rx antennas spaced by d.y.

Site #1 Site #2 Site #1 Site #2
e
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1.13dB

Power (dB)
=
o
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=
o
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Azimuth Angle (degree)

-6 6
Azimuth Angle (degree)
(a) Main beams. (b) Null point beams.

Fig. 7. Comparing beam patterns for two neighboring arm sites of an angular
separation smaller than the width of the main beam.

To scan multiple sites, we program the Tx antennas to succes-
sively steer the beam towards different directions in a time-
division manner, by emitting RF signals with distinct phase
combinations in each time slot. During the k-th time slot, to
focus the signals towards a bearing 6, the phase combination
for Tx antennas is determined as:

d_;(@) ~ D, 27rdt,;\sm0’m’ (N—1) 27rdt};\sm9}, ©)
where A is the signal wavelength; this endows directionality
to the RF sensing.

However, it is highly non-trivial to separate the RF re-
flections from different arm sites: the limited antennas along
with short distance between arm and radar force the reflected
signals from main (or even side) beams to get merged together,
rendering the boundaries between neighboring sites very
vague. For simplicity, we use two main beams to demonstrate
the worst case phenomenon of the merged signals for sensing
pulse from two neighboring arm sites in Fig. 12(a). Assuming
a ULA with 8 Tx-Rx pairs whose beamwidth is approximately
14°, pulse waveforms from sites #1 and #2 separated by
12° are indistinguishable as the magnitude difference between
two main beams is only 1.13 dB [33]. Such a phenomenon
makes the default radar beamforming scheme insufficient to
obtain fine-grained pulse waveforms for deriving accurate
BTFs needed by Eqn. (5). Therefore, we should consider
exploring a new method to separate the RF reflections from
neighboring arm sites.

To magnify the difference of the RF reflections from two
neighboring sites with an angular separation smaller than the
width of the main beam, we propose a differential beam-
forming with null-steering scheme to achieve super-resolution
beam scan. Null-steering is originally proposed to reject un-
wanted interference sources arriving from a known direction
by producing a null point in the response pattern [34]. As
shown in Fig. 12(b), in the case of using a ULA with 8 Tx-
Rx pairs, two beams whose null points are separated by 12°
yield a remarkable 20 dB amplitude differences between the
two main beams, rendering pulse waveforms at the two sites
highly distinguishable.

Herein, we present our null-steering via an example of
separating RF signals from two sites denoted by ®;(¢) and
®y(t), respectively. The RF signals received in a time slot can
be expressed as [35]:

yp(t) = v(01)@1(t) + v(02) Pa(t), @)

where v(0) = [1,e7%0) .. e/ (M~-Dal0)] js the Rx direction

vector with «(6) = M



By assigning differential weights to the received signals,
one can formulate the following:
s1(t) = wilyp(t) = [1,e*O0 77, MDD =0]Ty, (1)

. v , ®
32(t) = Wg{yp(t) = [17 6Ja(01)+19’ (s} eJ(M_l)a(91)+l9]TyP(t)

where ¥ = /180 is a small constant and 6, indicates the
null point. Associating Eqn. (7)-(8), we have

Sl(t) = a11<I>1(t) =+ a12<1>2 (t) Sz(t) = a21<I>1(t) + 022¢’2 (t),
where AO = 27l'drx(sil’l 92 — sin 91)/A and {au, a2, a1, a22}=
Z]W:Ol ejﬂm’ ZA{:OI ej(A(?-‘,—i?)m7 ZJW:Ol e—jﬂm, ZNI:(} e (AO—0)m
According to the Euler’s formula, the complex amplitude
a1y can be rewritten via

- M—1 - M—1 - M—3
app=e"7 Vel V4 eI

(M —1)9

19““ n e]. M;:;ﬂ n ej M;119)
(M - 3)9 ©)
— ...
2
Applying the same derivation method, the remaining com-
plex amplitudes can be expressed by the following:

M1
=l 2 9

(2cos + 2cos

arp = eI T AN (9 005 (AG + 9) (M — 1)/2)
+ 2cos((A0+ ) (M —3)/2) + ...),
_j%ﬁ( (M —1)0 (M —3)9
2
az =€~ (B0=9) (9 cos((AG + 9) (M — 1)/2)
+ 2cos((A0 —9)(M —3)/2) + ...).

Since a;; and ag; have the same amplitude but only differ in
phase, we can extract ®5(¢) by calibrating the phase difference
and subtracting the calibrated signals:

2 cos + 2cos +..), (10)

az1 = e

SM—1
173

ds(t) = 52(75)6]'%19 — se it

B jM=ipg, . (M —=1)Af .
= Dy(t)e’ = 2%(4sin 5 sin 5 (11)
(M —-3)A8 . (M —3)9

+ 4 sin 5 sin 5 + ...

Using the same method, ®;(¢) can be readily obtained by
replacing the null point in Eqn. (8) from 6; to 6.

2) Pulse Waveform Extraction: The mmWave radar in #/BP-
Fi utilizes an FMCW waveform, a sine wave with a linearly
increasing frequency over time [14]. Skin vibrations induced
by pulses cause minor distance variations that modulate the
reflected FMCW signals and affect their phase. Rx antennas
collect these reflections, and IF signals (differential signal
between Tx and Rx chirps) are processed by range FFT
to determine arm distance [36]. This is followed by the
differential beamforming with null-steering to further separate
the data from different arm sites. After processing multiple
chirps, the reflections from each arm site form a complex radar
data tensor X (d, q,v), where d, ¢, and v represent distance
bin, chirps, and arm sites, respectively. Leveraging the real
and imaginary components of X (d, ¢, v), the phase variations
A¢ incurred by pulse activities can be readily obtained.

We recruit four subjects and apply the aforementioned
method to measure their pulses in real-world environments
for three months. Examples of pulse waveforms from two arm
sites, separated by a 12° angle, are shown in Fig. 8(a)-8(d),
with different colors representing distinct sites, confirming

the successful resolution enhancement of our method. Then,
we estimate BP based on these collected pulse waveforms as
described in Sec. III-A. Fig. 8(e)- 8(f) compares the estimated
BP results and true BP, using different colors to distinguish
users. The figures clearly demonstrate a strong correlation
(correlation coefficient > 0.8) between the estimated and
true BP, further confirming the feasibility of employing the
BTF model for BP inference. Notably, the errors between the
estimated and true BP occasionally exceed medical standards,
attributed to the influence of temperature and time of day in
real-world environments, which the current BTF model fails
to address. This insight inspires us to utilize the power of DL
techniques to attain more precise BP results.
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Fig. 8. Examples of pulse waveforms obtained from four subjects (a-d), and
comparisons between BP inferred via BTF and true BP (e-f).

C. BP Inference

To address the limitations of directly using the mathematical
BTF model (lack of adaptability to environment factors), we
integrate BTF with a DL framework to overcome the challenge
of black box DL.

The combination of mathematical model and DL have
proven effective in various tasks [37], often achieved through
a cascading approach: using a rough mathematical model for
initialization and refining the results with DL, or using DL to
extract features as prior information for an accurate mathemat-
ical model. However, these solutions require manual parameter
adjustments and only provide shallow feature priors [38]. To
overcome these limitations, we propose a novel DL framework
with a structure specifically designed based on the BTF model,
constraining the search space of the loss function accordingly.
This allows the users and medical experts to gain understand-
ing of how and why specific BP outcomes are obtained from
the inputted BTFs, thereby facilitating the acceptance and
application of hBP-Fi in decision-sensitive medical services.

Particularly, we build ABP-Fi’s BP estimator upon deeply-
recursive convolutional network (DRCN) to optimize the BTF
model parameters, which is followed by long short-term mem-
ory (LSTM) modules to obtain the BP estimates. Specifically,
BTFs are first measured from the time series of varying pulse

waveforms via T, = P,(t)P,'(t). As shown in Fig. 9,



the BP estimator takes the measured BTFs as input, then it
splits the optimization of Eqn. (5) into sub-problems based on
alternating direction method of multipliers [39] as follows:

ot =0 —n L (@) + L X + 40" + BZ' O]

Z'"' = DRCN(0T )Y ’
)\tJrl — )\t +A®t+1 +BZt+1 _ C

(12)

which is subject to A® + BZ = C, and X is the Lagrange
multiplier, v is the penalty parameter. Each iteration is un-
folded into one sub-network in recursion, which forms multi-
cascaded sub-networks sharing the same network parameters.
The BTF-constrained DRCN is the core of combining the BTF
model with DL, which automates the iterative optimization
and variable splitting (commonly used in model-driven opti-
mization) through DL, making the proposed DL framework
explainable. The follow-up LSTM modules utilize the latent
BP information from the optimized DRCN model to mitigate
environmental variations, ultimately fine-tuning the SBP and
DBP results through dense neuron layers.

The loss function for estimation commonly adopts the mean
square error (MSE) to minimize the difference between the
network output and the ground truth values, which potentially
causes biased BP estimates due to potential DL overfitting. As
hBP-Fi is concretely based on hemodynamics, we additionally
take into account the error of the BTF optimization to establish
the BTF-constrained loss function:

&(E,) = J(O)|5 + |40 + BZ — C|3 + |lp - All3, (13)

where||-|| » represents the Frobenius norm, p = {ps, pa} and
p = {ps, pa} denote the ground truth values and estimated val-
ues of SBP and DBP, respectively. This loss function takes the
BTF-constrained parameter optimization as a regularization
term, rendering the optimization space explainable. Overall,
the explainable structure and explainable optimization spaces
render the decision-making processes explainable, thereby
enhancing the trustworthiness of the output results.

IV. SYSTEM EVALUATION

In this section, we first explain the implementation of ZBP-
Fi along with experiment setup, then we conduct a thorough
evaluation on #BP-Fi under various parameter settings.
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Fig. 9. BP estimator’s pipeline with the BTF-constrained DRCN structure.
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A. Prototyping and Experiment Setup

a) Hardware and Software: hBP-Fi adopts an mmWave
radar as the sensing front end for simultaneously monitoring
varying pulse waveforms along the arm, and a laptop is
used as the data processing back end. The adopted radar
is a commercially available TIT AWR1843BOOST mmWave
radar [20]. It operates at 77 GHz, with 3 Tx antennas and
4 Rx antennas, and a bandwidth of up to 4 GHz. A TI
DCA 1000EVM data capture adapter [40] is connected to
the radar to acquire real-time data and stream them to the
laptop. During data collection, the frame sampling rate is
set to 200 frames/second. hBP-Fi’s data processing pipeline
is implemented in MATLAB R2019b and Python 3.8. The
DL pipeline is built upon TensorFlow 2.2. We first processed
the captured FMCW reflections as described in Sec. III-B2 to
obtain pulse waveforms, then apply a sliding window of 512
samples shifted by 64 samples to infer BP.

b) Data Collection: We recruit 35 subjects (22 males and
13 females aged between 20 to 54) without known medical
conditions related to our evaluation; this study is conducted
with the approval of our institute’s ethics committee. The ex-
periment setup is shown in Fig. 10: by the standard validation
procedure for BP monitoring [22], we ask the subjects to sit
with their backs supported, legs uncrossed, and stretch his/her
arm. The mmWave radar is placed in front of the subject
with its FoV covering the whole arm area; it scans pulse
waveforms along the arm while the subject maintains minimal
body movements. The ground truth of BP is obtained using an
FDA-approved arm-cuff BP monitor Omron 7127 [41], with
the arm cuff held at heart level. This device only delivers
ground truth BPs for training #BP-Fi; it is not part of ABP-Fi
in practical usage. We particularly collect data at various clock
times and temperatures to evaluate the system’s robustness to
these factors. As the relative angle and distance between the
arm and radar can vary arbitrarily during actual use, we also
study hBP-Fi’s performance with varying radar placements.
Overall, we collect approximately 252,000 heartbeat cycles.

c) Evaluation Methodology: To evaluate hBP-Fi, we
use two widely adopted metrics, i.e., mean error ME =
> (pi—pi)/n and standard deviation of mean error STD =
V>n (pi — pi — ME)2/n, where j and p respectively de-
note the estimated and ground truth (true) BP values.
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Fig. 11. The overall performance of #BP-Fi.

B. System-Level Evaluation

1) Overall Performance: We first study hBP-Fi’s ability in
estimating BP, leveraging RF-sensed pulse waveforms. Results
from the five-fold cross-validation experiment are illustrated in
Fig. 11, which shows the Bland-Altman plots for the estimated
SBP and DBP. More than 95% points are narrowly distributed
within the limits of agreement, i.e., ME£1.98xSTD, suggest-
ing that the estimated BP can be an alternative to the true BP.
Overall, hBP-Fi achieves the ME of —2.05 mmHg and STD
of 6.83 mmHg for estimating SBP and ME of 1.99 mmHg
and STD of 6.30 mmHg for estimating DBP. Such decent
performance confirms the effectiveness of #BP-Fi.

To further validate h/BP-Fi, we compare the results of five-
fold cross-validation experiment with the acceptable range
regulated by the Association for the Advancement of Medical
Instruments (AAMI) [22] and the requirement for the Britain
Hypertension Society (BHS) standard [42] in Tables II and III,
respectively. One may readily observe that hBP-Fi satisfies
the recommended error boundary defined by the AAMI and
achieves BHS Grade A for estimating DBP and SBP. It is
worth noting that a recent proposal mmBP [16] claims to
achieve slightly lower estimation errors. However, as mmBP
takes a black-box DL model to “translate” single-site pulse
measurements to BP readings in a brute-force manner, its lack
of physiological basis makes one suspect a potential overfitting
by testing on data already used for training. On the contrary,
hBP-Fi is constructed upon a solid physiological basis and
realized by an explainable DL model to achieve accurate BP
estimation, so its performance firmly justifies an alternative to

TABLE II
COMPARING hBP-F1 WITH AAMI STANDARD.
ME (mmHg) STD (mmHg)
. SBP -2.05 6.83
hBP-Fi DBP 1.99 6.30
AAMI SBP and DBP <5 <8
TABLE III

COMPARING hBP-F1 WITH BHS STANDARD.

Cumulative Error Percentage

<5SmmHg <10 mmHg <15 mmHg
ABP-Fi SBP 61.50% 86.63% 97.65%
DBP 62.57% 87.82% 98.93%
Grade A 60% 85% 95%
BHS Grade B 50% 75% 90%
Grade C 40% 65% 85%

the FDA-approved cuff-based BP monitor.

2) Impact of Environment Factors: We are interested in
how hBP-Fi would perform in diverse real-world environ-
ments. Therefore, we group the dataset according to temper-
ature and clock time. Data from one environment is used
for testing, while data from the remaining environments is
used for training; this leave-one-environment-out experiment
ensures that the training and testing are mutually exclusive and
that #BP-Fi is evaluated in an untrained environment. Fig. 12
shows the results with more than 95% of the points in the
limits of agreements. Specifically, ABP-Fi achieves the ME of
—2.95mmHg and STD of 7.66 mmHg for estimating SBP and
ME of 2.63 mmHg and STD of 6.50 mmHg for estimating
DBP. The promising results confirm that ABP-Fi is capable of
being an alternative solution for accurate BP monitoring and
can successfully handle environment factor variations.
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Fig. 12. Performance of hBP-Fi in leave-one-environment-out experiment.

3) Impact of Radar Placement: In real-world environ-
ments, the distance and angle between the subject’s arm
and the radar may be different. To understand whether the
changes in radar placement affect system performance, we
conduct experiments by asking the subjects to collect data
with distance d = {30 cm, 50 cm, 70 cm, 90 cm} and angle
¢ = {0°,15°,30°,45°}. Table IV summarizes the ME and
STD quantified by the above factors. Overall, the performance
of hBP-Fi is stable as the angle changes. Besides, we notice
that the SBP and DBP are negatively affected by the increasing
sensing distance. Encouragingly, both SBP and DBP remain
within the acceptable range regulated by the FDA protocol
when the distance is within 90 cm. Since most people are fine
with a measure distance within 90 cm, ABP-Fi has confirmed
robustness in real-world adoption.

C. Micro-benchmark Evaluation

1) Effectiveness of Super-Resolution Beam Scan (SRBC):
SRBC is critical to obtain fine-grained BTFs and further

TABLE IV
PERFORMANCE WITH DIFFERENT RADAR PLACEMENTS.

d

¢ 30cm 50cm 70 cm 90 cm
0° -2.05+6.76  -2.04+6.72  -2.35+7.21 -3.4747.12
SBP 15° -2.004+6.74  -2.03+6.77 -2.15£7.36  -3.46+ 7.61
30° -2.02+6.81 -2.07£691 -2.48+7.11 -3.46+7.79
45° -2.064+6.92  -2.05+6.85 -2.10£7.20  -3.48+7.77
0° 1.99+6.31 2.03+6.82 2.68+7.47 4.33+7.22
DBP 15° 2.074+6.30 2.04+6.51 2.69+6.63 3.3447.30
30° 2.09+6.35 2.09+6.53 2.68+6.78 3.294+7.72
45° 2.03+6.34 2.06+7.72 2.69+7.28 3.36+7.87




obtain accurate BP. Therefore, we conduct an experiment to
compare our SRBC scheme with a traditional beamforming
scheme [36], leaving other system components intact. In the
case of using the traditional beamforming scheme, pulse waves
derived from particular angel bins [36] are treated as pulse
waves at particular arm sites. Fig. 13 compares the estimation
error for SBP and DBP using the two sensing schemes, where
the points represent ME and the error bars indicate STD.
Without using the SRBC scheme, the estimation error between
system outputs and true BP achieves —5.72+£17.65mmHg and
2.89 + 14.01 mmHg for SBP and DBP, respectively. These
are, however, reduced by our SRBC to —2.05 4 6.83 mmHg
and 1.99 + 6.30 mmHg for SBP and DBP, respectively. These
results indicate that, as we discussed in Sec. III-B1, the SRBC
is effective and indeed yields more accurate BP estimates.
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Fig. 13. Performance with different sensing schemes.

2) Resolution of Null Steering: The distribution of null
points determines the resolution of null steering. More null
points may result in too little variation between pulse wave-
forms, making it difficult to characterize hemodynamics.
Fewer null points, on the other hand, would result in fewer
pulse waveforms being captured along the arm, which could
hinder BTF optimization. Without pulse signals from mul-
tiple arm locations, we infer the resolution of null steering
by assessing the accuracy of BP measurements at different
candidate distributions. We particularly collect data at intervals
of 4°, 6°, 8°, 10°, and 12° between null points, all finer than
the width of the main beam of 14°. Fig. 14 shows both MEs
and STDs for SBP and DBP estimates; one may observe that
1) MEs do not vary significantly from intervals 4° to 6°, while
STD for SBP slightly decreases and the STD for DBP slightly
increases, ii) MEs and STDs decrease noticeably after the
interval reaches 8° and 10°, and iii) MEs and STDs become
relatively saturated till the interval of 12°. Such results indicate
that the resolution of our null steering approach is enhanced
from 14° to 8°.

3) Explainability in DL: Despite the clarification of DL
model’s explainability in Sec. III-C, we further demonstrate
the explainability in DL by showcasing how changes in the
inputted BTFs are associated with variations in the estimated
BP values, providing insights into the BP-estimating process.
To achieve this, we employ shapley additive explanations
(SHAP) [43] to present visual explainability of the impact
of different features on BP measurement. Specifically, each
BTF input is divided into 64 groups, where the mean of each
group serves as a feature, and SHAP values are computed
using SHAP gradient explainer. The top panel of Fig. 15
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illustrates BTF features for two instances of SBP/DBP values
from the same user: 110/74 and 103/72, while the bottom
panel shows the corresponding SHAP values, where higher
SHAP values indicate more significant contributions to BP
variations. It can be observed that features #10 to #30 exhibit
significant variations accompanied by higher SHAP values,
while the remaining features show minimal changes with lower
SHAP values. This direct association between the changes in
BTF features and BP variations establishes a clear linkage,
addressing the challenge of uncorrelated BP changes with
BTF variations in the black-box DL setting. By assessing the
consistency of BTF features with medical literature, such as
prospective clinical trials and physiological mechanisms, users
and clinicians can validate the BP results.
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Fig. 15. The SHAP plot of features from BTF.

V. CONCLUSION

Contactless BP monitoring is a critical yet challenging
problem in assessing health conditions, detecting potential
diseases, and improving overall well-being. This paper serves
as the first step towards such an ambition, driven by a sound
physiological basis while leveraging commodity mmWave
radar and explainable DL technologies. We implement #BP-
Fi based on a novel proposition to infer accurate BP via BP-
encoded hemodynamics of pulses transiting along arm arteries.
Specifically, we thoroughly study the hemodynamics and intro-
duce BTF that characterizes the underlying BP information in
pulse waveforms. To obtain BTF via RF sensing, we develop
a beam-steerable RF sensing that achieves super-resolution
recovery of waveforms with a granularity finer than the mini-
mum angular separation. Employing a carefully designed BTF-
constrained pipeline, we equip ABP-Fi with an explainable DL
that ensures accurate BP estimation and effective adaptation
to various real-world environments. Via extensive experiments
on 35 subjects, we demonstrate the promising performance of
hBP-Fi in BP inference, hence confirming #ZBP-Fi’s significant
implications to various medical applications.
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