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Leveraging Wearables for Assisting the Elderly
With Dementia in Handwashing
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Abstract—Proper handwashing, having a crucial effect on reducing bacteria, serves as the cornerstone of hand hygiene. For elders
with dementia, they suffer from a gradual loss of memory and difficulty coordinating handwashing steps. Proper assistance should be
provided to them to ensure their hand hygiene adherence. Toward this end, we propose AWash, leveraging inertial measurement unit
(IMU) readily available in most wrist-worn devices (e.g., smartwatches) to characterize handwashing actions and provide assistance.
To monitor handwashing scenarios round-the-clock while achieving energy efficiency, we design methods that distinguish handwashing
from other daily activities and dynamically adjust the sampling duty cycle. Upon detecting handwashing actions, we design several
novel techniques to segment different handwashing actions and extract sensor-body inclination angles that handle particular
interference of senile dementia patients. Moreover, a user-independent network model is built to recognize the handwashing actions of
senile dementia patients without requiring their training data. Furthermore, we propose a transfer learning method that improves
system performance. To meet users’ diverse needs, we use a state machine to make prompt decisions, supporting customized
assistance. Extensive experiments on a prototype with eight older participants demonstrate that AWash can increase the user’s
independence in the execution of handwashing.

Index Terms—Handwashing monitoring, wrist-worn sensing, LSTM, transfer learning.
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1 INTRODUCTION

THE world is aging rather rapidly, and the proportion of
the elderly with dementia is growing at a phenomenal

rate. For example, a recent report demonstrates that an
estimated 8 million Americans age 65 and older are living
with Alzheimer’s or other dementias [1]. The elderly with
dementia experience a gradual loss of memory and steady
deterioration of executive functioning to perform necessary
activities of daily living (ADLs) such as eating, grooming,
and dressing. Among ADLs, handwashing serves as a great
way for the elderly to reduce bacteria and avoid illnesses or
even fatal infections, which is critical in daily life, especially
during the outbreak of respiratory viruses such as COVID-
19 [2] or H1N1 [3]. Therefore, assisting the elderly with
dementia during handwashing is of great importance for
their overall well-being.

Recently, Apple introduces new features of a handwash-
ing APP on the Apple Watch [4], which nudges users to
wash their hands for a full 20 seconds. This can track how
well a user washes his/her hands in terms of duration,
but senile dementia patients desire more detailed assistance
(e.g., what handwashing action is performed, how well an
action is performed, and what action to perform next) to
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improve their handwashing behavior. Over the last decade,
the interest in fully automated handwashing action recog-
nition has been flourishing, utilizing devices ranging from
cameras to wrist-worn wearables. Existing works based on
cameras [5]–[7] are efficient, but the drawbacks of privacy
concerns and high hardware costs often prohibit the in-
stallation of cameras in bathrooms. In addition, wearable-
based approaches such as [8]–[10] show the initial suc-
cess of handwashing action monitoring. These approaches
mainly extract acceleration and angular velocity features
to differentiate handwashing movements. They generally
realize promising results for young and healthy people.
However, they are always ineffective once adopted to assist
in handwashing for older adults with dementia. The reasons
comprise of following three aspects: (1) Different behavior
patterns. The handwashing behavior patterns of senile de-
mentia patients are quite different from those of young and
healthy adults. For example, the hand movement trajectory
of older adults with dementia is more tortuous than healthy
adults, therefore leading to variable acceleration features
for the same handwashing action. Also, motor and muscle
weakness and rigidity introduce interferences in inertial
measurement unit (IMU) readings (such as more turning
points and different positions of peaks and troughs), which
always deform the repetitive patterns of hand movements.
To emphasize this, we show the accelerometer data of a
healthy adult and a senile dementia patient in Fig. 1. Thus,
recognition of handwashing action for senile dementia pa-
tients demands advanced data processing techniques. (2)
More distinct individual differences in handwashing movement
patterns. Due to the difference in cognitive impairment,
the elderly with dementia show more significant individ-
ual differences than healthy people [11]. Existing schemes
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Fig. 1. Examples of accelerometer data from a healthy adult and a senile
dementia patient.

rarely take the great individual differences into consid-
eration; therefore, they have insufficient accuracy for our
target users. To recognize various handwashing actions
accurately, general characters suitable for every dementia
patient should be investigated. (3) Diverse assistance manner.
Dementia patients suffer from different degrees of cogni-
tive impairment, resulting in diverse executive functioning.
They demand different assistance forms, which have not yet
been addressed by existing systems. So far, the wearable-
based handwashing assistance system for the elderly with
dementia is still a relatively new field, which requires fur-
ther exploration, and this situation is getting more urgent
with the aging population’s global trend.

Motivated by the above reasons, we propose AWash,
a handwashing assistance system for the elderly with de-
mentia leveraging only commodity IMU sensors so that
it can be implemented on most wrist-worn devices (e.g.,
smartwatches). Through observation, we find that during
handwashing, the wrist posture of senile dementia patients
is distinct among different handwashing actions and robust
to various interferences. This inspires us to investigate wrist
posture measurements to characterize handwashing actions
and then provide assistance accordingly. Our goal is to
build a handwashing assistance system for the elderly with
dementia, which can accurately recognize handwashing ac-
tions, provide different handwashing assistance solutions to
diverse and heterogeneous users, and can generalize to new
users without retraining or adaptation.

Despite this simple idea, four major challenges underlie
the design of AWash:

(1) How to monitor round-the-clock handwashing while
achieving energy-efficiency? To fully monitor handwashing
round-the-clock and avoid running costly algorithms during
non-handwashing actions, we need to distinguish between
handwashing actions and non-hand washing actions. How-
ever, diversities in behavior patterns hinder the modeling of
specific activities, making it challenging to profile various
actions. To overcome this, we propose a conditional random
field (CRF)-based method to determine whether the per-
formed action is handwashing or not. Meanwhile, we design
a sampling control method that dynamically adjusts the
sampling duty cycle according to the performed activities.

(2) How to further segment different handwashing actions
from the continuous and noisy IMU sensor data? Visuomotor
impairment affects eye-hand coordination for the orderly
in some dementias during handwashing [11]. This disturbs
IMU sensor data, thereby making it difficult to segment dif-
ferent handwashing actions. Besides, the presence of extra

unpredictable movements between handwashing actions is
common due to impaired memory and attention span. To
address it, upon detecting the handwashing scenario, we
use an autocorrelation-based method to further segment
different handwashing actions. Then, the start and end
point of the handwashing action is determined from linear
angular velocity troughs.

(3) How to extract effective representations of handwashing
actions? Sensory readings collected from wrist-worn devices
are coarse and noisy due to the uncoordinated nature of
movements of the elderly with dementia. Therefore, mo-
tion speed and displacement information directly estimated
from the accelerometer and gyroscope readings are insuffi-
cient when adopted in handwashing motion recognition for
senile dementia patients. To overcome this issue, we investi-
gate the relative inclination angles between the IMU sensor
and user body (sensor-body inclination angles) to facilitate
accurate and robust handwashing action recognition.

(4) How to design a user-independent handwashing motion
recognition system for senile dementia patients with diverse
cognitive impairment? There has been some evidence that
senile dementia patients have very diverse handwashing
patterns due to the different cognitive impairment levels.
For example, users with the same cognitive ability level
may have different motion trajectories during handwashing,
while dementia patients with different cognitive abilities
have not only different hand motion trajectories but also
different path tortuosities of the motion trajectory [11]. To
overcome this, we design a hybrid network model to handle
user dependence, which makes AWash available to anyone
without retraining or adaptation.

In summary, we makes the following contributions:

• We propose AWash, the first wearable-based hand-
washing assistance system for older people living with
dementia. It can characterize the unique handwashing
pattern of the elderly, recognize handwashing actions,
and support customized guidance to diverse users.

• We design a set of data processing algorithms to detect
handwashing scenarios, segment different handwash-
ing actions, and decode the relative position between
the IMU sensor and the user body from sensor readings.
A hybrid network model is used to deal with the sig-
nificant variance between individuals and achieve user-
independent handwashing action recognition. More-
over, we use a state machine to customize assistance
for users with diverse cognitive impairments.

• We implement a prototype system and conduct exper-
iments with various parameters and scenarios. The ex-
perimental results from eight older adults demonstrate
that AWash effectively recognizes the handwashing
actions of the elderly with dementia and can increase
their independence in washing their hands.

The rest of this paper is organized as follows: We first
introduce the preliminary in Section 2. Then we present the
system design in Section 3. We evaluate the performance of
AWash and present the results in Section 4. Section 5 reviews
the related work, followed by Section 6 discusses potential
directions for further investigation. Finally, Section 7 con-
cludes the paper. A preliminary of this paper appeared in
[12].
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Rub hands palm to palm Right palm over left dorsum 
with interlaced finger and vice 
versa

Palm to palm with fingers 
interlaced

Rotational rubbing, backwards 
and forwards with clasped 
fingers of right hand in left palm 
and vice versa

Rotational rubbing of left thumb 
clasped in right palm and vice 
versa

Backs of finger to opposing 
palms with fingers interlocked

Fig. 2. The handwashing procedure issued by WHO [13].

2 PRELIMINARY

In this section, we first describe the handwashing actions,
then introduce the basics of IMU sensors, and finally present
the intuition of using wrist posture to characterize hand-
washing actions which validate the feasibility.

2.1 Handwashing Actions
World Health Organization (WHO) issued guidelines to
provide recommendations for the improvement of hand
hygiene, shown in Fig. 2. The handwashing procedure com-
prises six actions, namely, rub hands palm to palm (action 1),
right palm over left dorsum with interlaced fingers and
vice versa (action 2), palm to palm with fingers interlaced
(action 3), backs of fingers to opposing palms with fin-
gers interlocked (action 4), rotational rubbing of left thumb
clasped in right palm and vice versa (action 5), and rotational
rubbing, backwards and forwards with clasped fingers of
right hand in left palm and vice versa (action 6). In this
paper, we focus on the recognition of these six handwashing
actions. In addition, the general methods proposed in this
work can be extended to other handwashing actions easily.

2.2 Basic of IMU Sensor
The inertial measurement unit (IMU) sensors usually in-
clude a 3-axis accelerometer, 3-axis gyroscope, and 3-axis
magnetometer, which can be used to calculate the posture
of objects in three-dimensional space. Due to its portability,
high accuracy, and ease of use, IMU is widely embedded in
smartwatches and bracelets, mainly used to record steps or
perform exercise tracking. In recent years, the development
of wearable systems has brought very important improve-
ments to human activity detection. Some work has shown
that IMU is promising to support fine-grained activity mon-
itoring, such as tooth brushing [14], fitness tracking [15], and
has great potential in handwashing detection [10].

2.3 Intuition of Handwashing Action Recognition Using
Wrist Posture
Previous hand action recognition approaches mainly extract
unique acceleration and angular velocity features such as
empirical cumulative distribution function representation [16],
mean, standard deviation, kurtosis, and skew from each scrub
for classification. We ask an elder dementia volunteer to
collect handwashing data, and we extract the above five
features to form a five-dimensional feature vector. To illus-
trate the feature distribution, we use t-distributed stochastic

(a) Conventional acceleration fea-
tures of handwashing actions

(b) Sensor-body angles of hand-
washing actions

Fig. 3. Distribution of conventional acceleration features and sensor-
body angles of six handwashing actions. Different colored points rep-
resent different actions.

neighbor embedding (t-SNE) to reduce the feature vector
to the three-dimensional space. Fig. 3(a) shows the t-SNE
projection of feature distribution of a senile dementia patient
performing six handwashing actions. We can observe that
points of the same handwashing actions do not show sig-
nificant narrow distribution, while some points of different
handwashing actions have near positions. Moreover, only a
limited feature sequence is extracted during handwashing,
which might lead to unreliable modeling of handwashing
actions. This indicates that such feature extracting approach
is inefficient to distinguish handwashing actions of older
adults with dementia.

Fig. 3(b) shows the scatter plot of sensor-body angles,
which describes the wrist posture. The six handwashing
actions are drawn in points with different colors. We can
observe that points of each action are mainly clustered in a
narrow belt, and points of different actions have distinguish-
able distribution positions. This demonstrates that sensor-
body angles catch the nuance and unique information of
handwashing actions, thereby being used in this paper.

3 SYSTEM DESIGN

This section first presents the system overview, then intro-
duces the design of our proposed system, AWash, which
recognizes handwashing actions through sensing the user’s
wrist posture, and fosters the independence of the elderly
with dementia by providing appropriate guidance during
handwashing.

3.1 System Overview

The basic idea of AWash is to calculate wrist posture
measurement from the IMU data collected by wrist-worn
devices, then distinguish handwashing actions, and finally
deliver effective interventions for the elderly with demen-
tia. The system overview of AWash is shown in Fig. 4.
The smartwatch continuously collects IMU sensor data and
sends them to an edge device through wireless connections
such as Bluetooth and Wi-Fi. The edge device receives the
real-time IMU data and deploys data processing algorithms.
There are five components of our system: Handwashing Sce-
nario Detection, Handwashing Action Segmentation, Handwash-
ing Information Derivation, Handwashing Action Recognition,
and Handwashing Assisting.

In Handwashing Scenario Detection, Conditional Random
Field (CRF)-based Activity Recognition is performed to deter-
mine whether the user is washing his/her hands through
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Fig. 4. The overall framework of AWash.

a calculation of handwashing probability. Meanwhile, Dy-
namic Sampling Control dynamically determines the sam-
pling duty cycle to achieve energy efficiency.

In the Handwashing Action Segmentation phase, we first
perform Handwashing action detection, which leverages the
autocorrelation-based method to distinguish handwashing
movements from non-handwashing movements and extra
movements. Then, we segment each handwashing action
based on the fact that the start and end of an action result in
troughs of linear angular velocity.

In the Handwashing Information Derivation phase, Coor-
dinate Transformation is performed to align sensor readings
to the body coordinate system. Relative inclination angles
between the IMU sensor and user body are then calculated
to characterize handwashing actions.

The core of AWash is Handwashing Action Recognition,
which builds a hybrid neural network in the edge server
to extract hidden user-independent features from the time
series sensor-body inclination angles and realize promising
recognition of handwashing actions. Moreover, we develop
a transfer learning method to improve learning of the neural
network of senile dementia patients utilizing general knowl-
edge learned from healthy adults, which relieves the pain
of collecting sufficient training data from senile dementia
patients.

Upon recognizing handwashing actions, the Handwash-
ing Assisting provides different assistance to diverse users
according to their diverse needs. Senile users with different
levels of cognitive abilities will encounter different problems
during handwashing. Accordingly, they require different
assistance to improve hand hygiene. For example, some
users need instructions on a specific step, some users need
to be prompted when they miss a step, and some users
demand to be prompted by obsessive behaviors. We use a
state machine to model the handwashing process of senile
users. By customizing the output functions, we support
users with customized assistance.

3.2 Handwashing Scenario Detection
As the first step, handwashing scenario detection is crucial
to avoid running costly classification algorithms during
non-handwashing activities. We design a lightweight con-
ditional random field (CRF) based classifier to recognize

various daily activities. Furthermore, we design a sampling
control strategy, which uses high sampling during hand-
washing and uses low sampling during other activities.

3.2.1 CRF-Based Activity Recognition
Recently, automatic detection of handwashing scenarios has
gained particular interest. For example, Apple Watch [4]
listens for the sound of soap and water running to determine
the start of handwashing. However, having the microphone
continuously sense the environment brings privacy con-
cerns and high computational costs. In this paper, we seek
to use only IMU sensors to distinguish between handwash-
ing scenarios and non-handwashing scenarios. The non-
handwashing scenarios involve a large number of activities,
such as dining, walking, and toileting. These activities can
affect the IMU sensors very diversely due to multiple factors
such as the user’s height, age, and habits. Conventional ma-
chine learning techniques that model each activity category
usually receive insufficient accuracy, especially in the lim-
ited sampling frequency. To address intra-class variations
and inter-class similarities, an intuitive way is to apply the
Hidden Markov Model (HMM) method. However, we find
that the HMM-based method can not achieve the desired
accuracy because the real-life data violate the independence
assumptions of the HMM [17].

To this end, we adopt the CRF, which eliminates the
unreasonable hypotheses in HMM. CRF is initially designed
for labeling sequential images. It can directly incorporate
many observed features and conditionally model the proba-
bility of a labeled sequence. Specifically, we first apply a 0.5s
sliding window with 50% overlap to the time series IMU
data. Then we calculate the mean-crossing rate (indicates
the changes in the body state) of all six sensor axes (three
for accelerometer and three for gyroscope) to build feature
vector xk at window k. Given the feature vector sequence
from successive windows X = {x1, x2, ..., xK}, our goal is
to estimate an activity label sequence Y = {y1, y2, ..., yT }
where yi represents handwashing or non-handwashing ac-
tions. The likelihood of the labeled data is calculated as:

P (Y|X) =

∏T
t=1 Ψ(yt−1, yt,X)∑∏T
t=1 Ψ(yt−1, yt,X)

, (1)

where Ψ is the potential function. The model is trained to
maximize P (Y|X). The main difference between CRF and
HMM is that HMM models the joint probability of both
the labels and input features P (Y,X), while CRF models
P (Y|X). This allows CRFs to incorporate complex features
of the feature sequence X in real-life environments.

To estimate parameters as well as capture the interde-
pendency of the label, we introduce the state to the model.
A state is defined as si = (yi, bi, ei), where yi is the label, bi
and ei represent the begin time and end time respectively.
The likelihood of state sequence S = {s1, s2, ..., sT } given X
is defined as:

P (S|X) =

∏T
t=1 Ψ(st−1, st,X)∑∏T
t=1 Ψ(st−1, st,X)

. (2)

The potential function Ψ is defined as

Ψ(yt−1, yt,X) = exp(
∑

θkfk(si−1, si,X)), (3)
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where fk is a boolean function, and θk is the weight of fk.
During the training phase, fk and θk are learned by

finding the maximum of L(θ) =
∑
logP (si|xi). We imple-

ment the optimization algorithm by L-BFGS based on the
following equations:

P (S|X, θ) =

∏
Mt(si−1, si|X)∑∏
Mt(si−1, si|X)

, (4)

Mt(si−1, si|X) = [mt(yt−1, yt|X)] , (5)

mt(yt−1, yt|X) = exp(
∑

λkfk(yt−1, X, t)

+
∑

ukfk(yt, X, t)), λk, uk,∈ θ.
(6)

After training, we estimate the activity label sequence
by maximizing P (Y|X, θ), which is solved by finding the
optimal path of the graphical model, which yields new
equation as follows:

max
∑

θGi(si−1, si, X), (7)

where Gi(si−1, si, X) = (f1(si−1, si, X), f2(si−1, si, X), ...,
fN (si−1, si, X))T . Although CRF eliminates the inde-
pendence assumptions, it maintains the same first-order
Markov assumptions as the HMM model makes. The time
complexity of inferring the active label sequence in CRF
is the same as that of HMM, except that it requires more
computation than HMM when training CRF. Therefore,
the proposed method achieves time-efficient and can react
immediately once the handwashing scenario is detected.

Note that different handwashing actions are seen as
a whole at this stage. Upon detecting the handwashing
scenario, we analyze the handwashing data to further recog-
nize the performed handwashing activities. We ensure the
analyzed data are longer than 20 seconds to avoid inter-
rupting the analysis when those poorly performed hand-
washing actions are incorrectly classified as non-washing
scenarios. The 20-second timer provides a reasonable trade-
off between timely assistance and computational efficiency.
Experiment validates the effectiveness of our proposed
method, which is shown in Section 4.5.2.

3.2.2 Energy-Efficient Sampling
A sampling control strategy is necessary to minimize the
battery consumption while ensuring capture handwashing
actions. Luo et al. propose a duty cycle control algorithm
[18] that changes the sampling duty cycle based on the
percentage of battery left and current activity. However,
when a user wash hands when the battery runs low, direct
application of such method will result in very low sam-
pling. This can lead to inaccurate recognition of fine-grained
handwashing actions. Therefore, we modify the method
proposed in [18] to be battery-irrelevant.

The model is specified by the elements of
{S,A,O,Φ,Ω,R}, which represent state, action, observation,
state transition function, observation function, and reward
function respectively. The state at time t is specified to
be St = (ηt, t), where ηt is the percentage time the user
is washing hand during an observation window, which
is set to be one minute. We define the actions to be
At = {0, 1, 2} that represents sampling duty cycle, where
0 is no sampling, 1 is the minimal sampling for the device,
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Fig. 5. Example of processing accelerometer data of Y-axis using
autocoloration-based method.

and 2 is the sampling duty cycle required by AWash (not
to confused by sampling rate). The observation Ot = 0, 1, 2
indicates the percentage time the user is washing hand
during an observation window, where 0 is 0%, 1 is between
0% to 100%, and 2 is 100%. The state transition function
Φ(ηt+1|ηt, t) indicates the handwashing probability during
different times of a day, which can be learned from the user
traces. The observation function is defined as:

Ω(Ot|St, At) = Ω(Ot|ηt, At) =

(At

Ot

)( 3−At

ηt−Ot

)( 3
nt

) , (8)

and the reward function is defined as R(St, At) = At · ηt.
The dynamic control of sampling duty cycle is solved by

maximizing E
∑
γtR(St, At), where γ ∈ (0, 1) is the factor

to ensure convergence of the model. With this sampling con-
trol strategy, the sampling duty cycle is high during hand-
washing scenarios and decreases to a low sampling duty
cycle during non-handwashing scenarios. The experiment
validates the effectiveness of the sampling control method.
Details of the experiment result are shown in Section 4.5.3.

3.3 Handwashing Actions Segmentation
Intuitively, we can apply the sliding window method
to segment the collected data into continuous segments
and then extract features for classification. However, extra
movements/non-handwashing actions between predefined
handwashing actions are common in real-life, which dis-
turbs handwashing action monitoring. To avoid unneces-
sary computational cost and misclassification, we design
algorithms to detect and segment handwashing actions.

3.3.1 Handwashing Action Detection
A key observation is that the elderly with dementia always
perform each kind of handwashing action repeatedly during
handwashing. Such repetitive movements lead to repetitive
patterns in accelerometer data. While extra movement and
non-handwashing movement usually do not have repetitive
patterns. Thus, our basic idea is to check whether the
accelerometer data in a sliding window have repetitive
patterns, then detect the handwashing actions. However,
due to the impaired eye-hand coordination ability of senile
dementia patients, accelerometer data of each execution
of handwashing action are noisy and coarse. To enable
effective data processing, AWash first applies the moving
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average filter to reduce the random noises from the IMU
sensor readings roughly.

We observe that data from repeated handwashing move-
ments differ in amplitude, the number of peaks, and peak
positions. Intuitive ways such as comparing peak to peak
distance and Fourier transform can not solve our problem.
Therefore, we adopt autocorrelation to process the acceler-
ation of handwashing actions, which can detect periodicity
robustly with significant data variations.

We first apply a 6 s sliding window to the time series
accelerometer data to ensure capturing of repeated hand-
washing actions. Then, we calculate the autocorrelation of
the data in the window by varying lag from 1 to window
size × fs −1, where fs is the sampling rate. If the data in
the window are from the same kind of handwashing action,
the autocorrelation-lag trajectory will show more than two
peaks. The lag associated with the first peak is determined
as the repetition period P . If the data in the window are
from extra movement or non-handwashing movement, no
autocorrelation peak can be observed.

Fig. 5 shows an example of processing accelerometer
data of the Y-axis. Handwashing movements are marked
with the yellow background, and non-handwashing move-
ments and extra movements are marked with white back-
ground. We can observe that although accelerations of the
same kind of handwashing action have diverse waveforms
(e.g., different number of peaks), the auto autocorrelation-
based method can distinguish handwashing actions with
non-handwashing movements and extra movements ef-
fectively. Since X, Y, and Z-axis reflect the characteristics
of handwashing actions from different angles, we take a
movement as handwashing actions if the time series data
from any axis are classified as handwashing actions. Note
that we do not process the gyroscope data in this stage
because accelerometer data have better performance and are
sufficient to realize promising detection.

3.3.2 Start and End Position Detection
By observing that the amplitude of IMU sensor data is
directly proportional to movement intensity, we check the
IMU sensor data values to locate each action’s start and end
position. Since the device coordinate system rotates with
the wrist when performing different handwashing actions,
the start and end of each handwashing action might be
peaks or troughs of X, Y, and Z-axis data of accelerometers
and gyroscopes. To address this, we turn to use the linear
angular velocity (LAV):

LAV =
√

(wx)2 + (wy)2 + (wz)2, (9)

where wx, wy , wz are the gyroscope readings in the X, Y, Z
axis, respectively. The use of LAV relieves us of the bother of
determining whether the start and end of action correspond
to a peak or a trough. In the LAV data of a handwashing
action, the start and end positions must correspond to the
trough near zero. To accurately segment the action without
being interfered by the extra troughs, we first compare the
distance between troughs and the estimated period P in
the sliding window. The indexes of two troughs with a
distance closest to P are considered the positions where a
handwashing action begins and ends. Then, by searching
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Fig. 6. Example of searching the start and end positions of handwashing
actions based on LAV data.

forward and backward, the start and end positions of the
other handwashing actions in the sliding window are lo-
cated by finding troughs that have distance most similar
to the estimated period P . Fig. 6 shows an example of
searching start and end points based on LAV results.

3.4 Handwashing Information Derivation

We first transform sensor readings to the body coordinate
system and then calculate sensor-body inclination angles.
The advantages of using sensor-body inclination angles in-
clude (i) interferences affect sensor-body inclination angles
to some extent, but not seriously. (ii) diversity in motion
trajectory and path tortuosity only have a marginal effect on
the sensor-body inclination angles. (iii) different users can
have consistent patterns of sensor-body inclination angles.

3.4.1 Coordinate Transformation
During handwashing scenarios, three coordinate systems
are involved, namely, Device Coordinate System (DCS), Earth
Coordinate System (ECS), and Body Coordinate System (BCS).
Fig. 7 shows the three coordinate systems and Euler rotation
angles. We first transform IMU sensor data from DCS to
ECS, then transform data from ECS to BCS, and finally
calculate the sensor-body inclination angles.

DCS to ECS: AWash first uses a quaternion-based
method to align data from DCS to ECS. Quaternion is a
complex number of the form q = qii+qjj+qkk+qr , where i,
j, and k are the fundamental quaternion units, qi, qj , qk, and
qr are real numbers. To simplify the calculation processs, we
perform normalization based on q2i + q2j + q2k + q2r = 1. We
convert sensor readings from DCS to ECS using quaternion-
based rotation:

Pe = qdePdq
−1
de , (10)

where Pd is the data collected in DCS, Pe is the rotated
data in ECS. The quaternion from DCS to ECS qde can
be obtained directly from IMU sensors. Also, q−1de is the
conjugate quaternion of qde.

ECS to BCS: We found that participants would face
different directions when washing their hands. Just convert-
ing data from DCS to ECS cannot provide stable posture
patterns to achieve accurate sensing. Thus, we transform
the converted data in ECS to BCS to normalize the sensor
readings, computed as:

Pb = qebPeq
−1
eb , (11)

where Pe is the converted data in ECS, Pd is the rotated
data in BCS. The qeb is the quaternion from ECS to BCS,
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and q−1eb is the conjugate quaternion of qeb. Given that
quaternions from ECS to BCS cannot be directly obtained
from the sensors, we use the Euler angle-based method
to calculate the wanted quaternions qeb. We transform the
data in the order of yaw (ψ), pitch (θ), and roll (φ), which is
defined as:

qeb =


sinφ2 cos

θ
2cos

ψ
2 − cos

φ
2 sin

θ
2sin

ψ
2

cosφ2 sin
θ
2cos

ψ
2 + sinφ2 cos

θ
2sin

ψ
2

cosφ2 cos
θ
2sin

ψ
2 − sin

φ
2 sin

θ
2cos

ψ
2

cosφ2 cos
θ
2cos

ψ
2 + sinφ2 sin

θ
2sin

ψ
2

 . (12)

We noticed that during handwashing, users always ex-
tend their hands in the same direction as they face. We are
inspired to use users’ hand movements to infer the direction
they are facing, or guide users to swing their arms forward
a few times to help determine their body directions. We
assume that users are standing on the horizontal ground.
Thus, θ and φ are zero. And, ψ can be defined as the
counterclockwise rotation angle around the North direction.
First, we calculate the double integral of the Cartesian plane
of the acceleration on the X-axis and the Y-axis in ECS,
which are the accumulated distance from the acceleration
along the X and Y-axis. Second, we calculate the angle α
between the X-axis and the Y-axis displacement caused by
arm movements as follows:

α = |arctan(
Accumulated Distance in Y-axis
Accumulated Distance in X-axis

)|. (13)

Note that the range of α calculated using Equ. 13 is between
0 and π

2 . We need to convert it from 0 to 2π to get the yaw
angle ψ. We adopt a quadrant-based method to convert α to
ψ, which is defined as [19]:

ψ =


3π
2 + α; if Q = 1
π
2 − α; if Q = 2
π
2 + α; if Q = 3
3π
2 − α; if Q = 4

, (14)

where Q is the quadrant of arm movement that can be
estimated based on the order of peaks and troughs on
accelerations on the X and Y-axis.

3.4.2 Sensor-Body Inclination Angles Calculation
Fig. 8 shows the sensor-body inclination angles, AY R, AZR,
and AXR, where R is the acceleration of BCS. The sensor-
body inclination angles can be calculated as follows:

AXRAY R
AZR

 =


arctan(

√
a2y+a

2
z

ax
)

arctan(

√
a2x+a

2
z

ay
)

arctan(

√
a2x+a

2
y

az
)

 , (15)

where ax, ay , az are the transformed acceleration in BCS.
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Fig. 9. Architecture of the hybrid model.

An intuitive way to recognize different handwashing ac-
tions is to compare the collected data with known templates
(e.g., dynamic time warping). However, it is challenging
to generate a user-independent standard template for each
handwashing action. Therefore, we first extract sensor-body
inclination angles and then build an efficient neural network
to learn the relationship between sensor-body inclination
angles and handwashing actions.

3.5 Action Recognition
In this section, we first sketch the hybrid network model
to identify handwashing actions. Then, we introduce the
detailed user-independent handwashing action recognition
method. Finally, we present the transfer learning strategy to
improve the recognition performance.

3.5.1 Hybrid Model
After extracting the time series sensor-body inclination
angles, a new challenge arises: how to extract the user-
independent features quickly and ensure the real-time abil-
ity and accurate classification of handwashing actions? To
address this problem, we leverage the power of Long Short
Term Memory (LSTM) to learn meaningful information
hidden in wrist posture sequences and develop a hybrid
model to achieve accurate classification.

Fig. 9 shows the architecture of the hybrid model, which
consists of three layers, the input layer, the hidden layer,
and the output layer. The input layer takes the sensor-body
inclination angles as input. Then, the information of the
wrist posture and movements of hands are fed into the
hidden layer. The hidden layer extracts user-independent
features. Specifically, we leverage the power of LSTM. Since
the single-layer LSTM cannot provide sufficient fine-grained
features, we use the multi-layer LSTM network to obtain
user-independent features. The output layer consists of an
aggregate layer and a softmax layer, which recognizes hand-
washing actions.

3.5.2 User-Independent Handwashing Action Recognition
Given the sensor-body inclination angles, we normal-
ize them and stretch them to the same length in time
scale. We then use the hybrid network to generate user-
independent features based on the input angle matrix
M = {A′XR, A′Y R, A′ZR} and recognize each handwashing
action. For an input vector mi,t of the ith LSTM layer, we
can obtain an output hi,t. The accumulated output of the
last LSTM layer over time is a compressed representation
of handwashing action. We show examples of the extracted
features from three volunteers in Fig. 10 by using t-SNE
to reduce feature dimensionality. The same handwashing
actions of three volunteers have a narrow distribution, while
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Fig. 10. t-SNE projection of the time-series user-independent features
of handwashing actions performed by three volunteers. A represents the
handwashing action ID, and V represents the volunteer ID. For example,
A1V1 represents the volunteer 1 performing action 1.

different handwashing actions have a diverse distribution.
The results show that the extracted features enable dis-
criminating handwashing actions and handling the differ-
ences in user behaviors. Finally, the output layer obtains
a prediction probability for each handwashing action. In
addition to the six predefined handwashing actions, we
added an additional NULL class to prevent misclassification
of non-handwashing actions and poorly performed actions
as predefined handwashing actions. We take prediction with
the highest probability as the recognized action.

Sensor-body inclination angles are robust to interfer-
ences, and the hybrid network derives cross-user patterns
of handwashing movements. Compared with the traditional
methods based on training the acceleration and angular
velocity features for detection, we significantly improve
the recognition recall, precision, and F1-score. Experiment
details are presented in Section 4.4.

3.5.3 Transfer Learning

Train a well-performed model requires to collect data from
a large number of senile dementai patients to include suffi-
cient diversities. However, there is no public data set of se-
nile dementia patients that contains detailed handwashing
activities acquired from wrist-worn devices. It is trouble-
some to collect sufficient training data because we need the
consent of relevant personnel for long-term sampling and
need the cooperation of the elderly with dementia, which is
very costly.

The scarcity of labeled time-series data can hinder
the proper training of deep learning models. To alleviate
the data scarcity problem, we propose a transfer learning
method. The idea of transfer learning is to extract knowl-
edge from a different but related source domain and use it to
improve the learning of a model on our target domain. Data
from the source domain can compensate for the scarcity of
data on the target domain. We obtain the source domain
from healthy adults, which is defined as Ds = {Xs, Ys},
whereX is the input data to the hybrid network and Y is the
associated action labels. And the target domain is defined as
Dt = {Xt, Yt}. We perform transfer learning by first learn
a predictive function fs to associate Ys with Xs, then solve
the predictive function ft that associates Yt with Xt based
on fs. Specifically, the proposed transfer learning involves
five steps:

1) Acquiring Ds: original IMU sensor data is firstly pro-
cessed as introduced in Section 3.3 and Section 3.4.

The sensor-body inclination angles are calculated, nor-
malized, and form Xs. To address the heterogeneity
of the source data, we normalize Xs using min-max
normalization. Besides, the associated action labels are
aggregated to form Ys.

2) Learning of fs: Xs is inputted to the hybrid network.
By minimizing the differences between Ys and the
predicted results, the parameters of fs at each layer are
learned.

3) Initializing a network in the target domain: initializing
the hidden layer of the hybrid network uses the weights
and bias of fs. Then, we build a new output lay on the
hybrid network.

4) Acquiring Dt: we process the data from dementia pa-
tients as described in the first step to obtain Dt.

5) Learning of ft: we solve ft by frizzing the hidden layer
and fine-tuning the weights of the output layer using
Dt = {Xt, Yt}.

Using this method, we can achieve accurate handwashing
action recognition by collecting a small amount of data
from senile dementia patients. We show the results in Sec-
tion 4.5.1.

3.6 Handwashing Assisting
We aim to deliver effective interventions, foster the indepen-
dence of the elderly with dementia by providing appropri-
ate guidance for handwashing. Handwashing assistance for
the elderly with dementia based on common-sense knowl-
edge is not sufficient. Dementia is a progressive impairment
of cognitive function, often accompanied by a decline in
motor ability [20]. After consulting with potential users,
their family members, caregivers, and physicians, we found
that the elderly with different cognitive abilities always
encounter various problems when washing hands and have
different assistance needs. For example, seniles with mild
cognitive decline might forget the handwashing process and
miss a few steps in the overall task. Practicing handwashing
actions in the same procedure is an essential part of nursing
interventions for them [21]. The situation of the elderly with
moderate dementia is worse. They might forget how to
perform a specific action, have obsessive behaviors, fail to
focus on the task, then lose track of the overall progress. The
patients are nevertheless able to cope, provided with some
verbal guidance [22]. For those who have severe dementia,
the problem is more complicated. Accordingly, seniles with
different cognitive abilities require different assistance to
improve hand hygiene.

3.6.1 Handwashing Process Modeling
To support customized assistance, we adopt the state ma-
chine to model the process of user’s handwashing and
provide assistance. The use of state machine technology is
because its outputs depend on the entire historical inputs,
not just on the most recent input. Five variables are in-
cluded, namely input, output, state, next-state function, and
output function:
• Input, It, can be six handwahsing actions.
• Output, Ot, is the prompt decision.
• State, St, means the current state of the user (e.g.,

performing action 1).
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• Next-state function, n(It, St) 7→ St+1, maps the input It
and the state St to the next state St+1.

• Output function o(It, St) 7→ Ot, maps the input It and
the state St to the output Ot+1.

Caregivers, physicians, and family members can help users
set up customized prompts. When continuous handwashing
actions are recognized and inputted to the state machine,
the system continually updates the status and prompts
according to user-defined output functions.

Fig. 11 shows an example of a state transition diagram
for prompting users when they do not follow the recom-
mended step order during the task. An arrow from state St
to state St+1 describes that transformation happens with
input I (next-state function). We add time constraints to
monitor obsessive behaviors and make sure the time length
of handwashing is sufficient. The user-defined outputs are
hidden in the diagram. The state transition diagram can be
modified flexibly according to the user’s needs.

3.6.2 Design of Audio Prompt
AWash provides users with audio prompts. The reasons
include: (i) they are familiar with audio prompts because
their family members and caregivers always use verbal in-
structions, (ii) prompting in the verbal medium rather than
the visual medium provides a more direct augmentation of
executive function [23], and (iii) video may distract them
and interrupt the execution of handwashing tasks.

The audio prompts provided by AWash are carefully
designed to be understood by the elderly with limited
cognitive ability: (1) Whether the voice is known does not
affect the assistance performance, and the male voice is
preferred to the female voice [24], we chose to use a smooth
and gentle male voice. (2) More straightforward commands
require less cognitive ability. We use “ Rub palm to palm”
instead of “You missed a step. Please rub your palm with another
palm now.” (3) The target users usually suffer from hearing
loss. We send a test prompt to make sure all prompts are
loud enough to be heard clearly during the initialization.

4 EVALUATION

This section evaluates the performance of AWash with eight
participants in various scenarios.

4.1 Experimental Setup
To validate the feasibility of AWash, we build a prototype
equipped with a 9-axis IMU sensor, MPU9250 [25]. The pro-
totype includes a 3-axis accelerometer, a 3-axis gyroscope,
and a 3-axis magnetometer, which is an alternative to a

TABLE 1
Participants’ information.

ID 1 2 3 4 5 6 7 8
Age 81 75 74 71 71 68 65 65

Gender F M M F M M F M
MoCA 21 20 18 21 25 27 23 28

smartwatch. During handwashing, our prototype collects
the IMU sensor data with the sampling rate of 100Hz
and sends them to a laptop through Wi-Fi. The laptop
acts as the edge server, which processes time-series IMU
sensor data then recognizes the handwashing actions using
a deep learning network. Given the detected actions, the
edge server assists the user in the proper execution of the
handwashing process. A camera is placed above the sink to
record participants’ handwashing actions to provide ground
truth. Audio prompts are recorded in a male’s smooth
and gentle voice. In the experiment, we use an external
speaker to play the audio prompt, which can be played by
a built-in speaker after being implemented in commodity
smartwatches.

We recruit 8 participants from an elderly community
to record handwashing data. This study was conducted
with the approval of the ethics committee of the facility
and the consent of the participants’ families. Before data
collection, the Montreal Cognitive Assessment (MoCA) [26]
is used to test the presence of cognitive impairment in
participants. Table 1 presents the demographic information
about participants and their evaluation results. Scores on
the MoCA range from 0 to 30, with a score of 26 and higher
generally considered normal.

After a short training, participants are asked to record
handwashing data repeatedly for 5 times in sinks (30-35
inches) at their homes and a children sink (26 inches) in
our lab. Also, all participants are asked to collect their
handwashing data with the AWash prototype at least once
a day for a 20 day experiment. To accommodate differences
in position to wear the device, they are encouraged to wear
the prototype according to their habits. Data collection of
each session is currently triggered manually, which can
be triggered automatically in future work through smart
sensing or smart home products. In total, we collected over
6, 000 action segments.

4.2 Evaluation Matrices
Recall. The ratio of the instances that are correctly captured
as label A among all instances that should have a label A.
High recall means that the classifier is returning a majority
of all positive results.

Precision. The ratio of the instances that are correctly
recognized as label A among all the instances predicted as
label A. High precision means that the classifier is returning
accurate results.

F1-score. The harmonic mean of precision and re-
call, which is defined as 2(recall · precision)/(recall +
precesion), where an F1-score reaches its best value at 1
(perfect precision and recall) and worst at 0.

4.3 Overall Performance
To understand AWash’s performance to recognize hand-
washing actions in the user-independent scenario, we con-
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duct leave-one-participant-out-validation, where data from
one participant are used for testing and the remaining par-
ticipants for training. We use data collected at participants’
homes since the heights of the sink in their home are com-
fortable to use, and the extracted sensor-body inclination
angles are usually consistent and unique. Overall, AWash
achieves 92.94% average recall, 92.60% average precision,
and 92.76% average F1-score among eight participants.
Moreover, 80% of the recognition time delay is less than
0.9 seconds. This indicates that AWash can achieve accurate
handwashing action recognition in a timely manner, and
the elderly with dementia can benefit from AWash without
providing their training data.

Fig. 12 shows the detailed confusion matrix of the cu-
mulative results. Each entry Ci,j is defined as the ratio of
the number of the ith action predicted as the jth action
to the total number of the ith action. We find that false
identification occurs between actions 2 and 3, and between
actions 5 and 6. This is because each pair of handwashing
actions share very similar movement patterns and wrist
postures. We also can observe that instances belonging to
action 1 are more likely to be misclassified as action 6 than
action 5. A possible reason for the imbalance errors is the
imbalance in the number of collected instances.

4.4 Comparative Study

AWash designs a set of novel algorithms to accurately
recognize handwashing actions for senile dementia patients.
We first compare AWash with several highly used prediction
methods, then we test typically related works with our
dataset and report the comparison between AWash and
them.

4.4.1 Comparison With Highly Used Prediction Methods
A wide variety of prediction methods have been used
for recognizing human activities. The choice of prediction
method in our domain is difficult since it must be accurate
in differentiating handwashing actions and robust against
natural behavior variations. Similar to [27], we chose three
additional highly used classifiers, including Ploy kernel
Support Vector Machine (SVM), Random Forest (RF), and
k-Nearest Neighbors (kNN), each with different advantages
and limitations. All classifiers are implemented with the
default setting by Sklearn. We extract significant features
as input to these classifiers including empirical cumulative
distribution function representation [16], mean, standard devia-
tion, kurtosis, and skew from sensor-body inclination angle

TABLE 2
Comparisons of AWash with typical works on handwasing monitoring

via wrist-worn wearables.

Work Method Additional
Tools

User
Dependence

Recall
(%)

Precision
(%)

F1-score
(%)

Harmony HMM X X 73.36 74.49 74.07
WristWash HMM × X 70.60 72.60 71.59

AWash Deep
Learning × × 92.94 92.60 92.76

data, which have been proven effective by existing studies
for activity recognition [28]. We conduct five-fold cross-
validation for each prediction method and report the recall,
precision, and F1-score in Fig. 13. It shows that AWash
outperforms all tested methods, followed by RF and kNN.
This again emphasizes the challenges of accurately and ro-
bustly recognizing handwashing actions in senile dementia
patients, and demonstrates that the algorithms proposed by
AWash are critical and effective.

4.4.2 Comparison With Typical Related Works
There are several approaches exploiting the IMU sensor
on wrist-worn wearables to monitor handwashing actions,
namely, WristWatch [10] and Harmony [9]. They are initially
designed for healthy adults, but we are interested in how
well they perform when used on senile dementia patients.
Therefore, we implement WristWatch and Harmony with
our dataset, using the same experimental setup as they de-
scribed. We compare AWash with them in terms of method,
the requirement of additional tools, user-dependence, recall,
precision, and F1-score in Table 2. Both WristWatch and
Harmony incorporate the HMM-based analysis method. As
we discussed in Section 3.2.1, the HMM-based method can
not achieve desired accuracy because handwashing actions
from senile dementia patients usually violate the indepen-
dence assumptions of the HMM. In contrast, AWash designs
a deep learning model, which is effective in learning the
nuance of handwashing actions. Moreover, Harmony re-
quires additional components, including Bluetooth beacons,
Bluetooth-enabled liquid dispensers, relays, and a server,
which renders it difficult to be widely deployed. Besides,
WristWatch and Harmony are user-dependent; that is to
say, they do not work well when generalizing to new
users. In contrast, AWash only uses IMU on the wrist-worn
wearables, and it is user-independent to save the effort of
collecting training data from new dementia users.

Meanwhile, in terms of handwashing action recognition
performance, WristWatch and Harmony achieve recall, pre-
cision, and F1-score all below 70%. This emphasizes the
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earlier point in Section 1 that they are intended to be used
by healthy adults and are not suitable for senile dementia
patients. And AWash is accurate and overcomes most of the
limitations of existing approaches.

4.5 Key Algorithm Study
4.5.1 Performance of Transfer Learning
To evaluate the effectiveness of our proposed transfer learn-
ing algorithm, we collect data from 35 healthy adults to
form the source domain and take data collected from eight
participants as the target domain. We conduct leave-one-
participant-out-validation on the data of eight older adults.
Fig. 14 compares the results of train on target only and trans-
fer learning. We can observe that the performance of the sys-
tem is slightly improved when using transfer learning, with
average recall, precision, and F1 improved 0.19%, 0.33%,
0.26% respectively. This shows that our transfer learning
strategy has the potential to make up for the problem of
insufficient label data and realize the accurate detection of
handwashing in senile dementia patients.

4.5.2 Performance of Handwashing Scenario Detection
To study how accurate our proposed method can dis-
tinguish the handwashing activity from non-handwashing
activities, we ask participants to wear our prototype
and record their non-handwashing daily activities, in-
cluding sleeping, dining, walking, sitting, washing hands,
standing, toileting, taking a shower, reading, going up-
stairs/downstairs, and watering plants (labeled as non-
handwashing). We conduct five-fold cross-validation to
evaluate the performance of distinguishing the handwash-
ing activity from non-handwashing activities. To under-
stand the detailed performance, we report the algorithm
performance with different numbers of training iterations in
Fig. 15. We can observe alternating peaks and troughs and
increases in precision, recall, and F1-score from 1 iteration
to 40 iterations. As 25 iterations is a good trade-off between
computation complex and performance (achieve precision,
recall, and F1-score above 80%), we adopt 25 iterations in
the training phase. Moreover, the results demonstrate that
our proposed method can achieve reasonable performance
in real-life environments, thereby providing the basis for the
system. Note that once handwashing actions are detected,
we use a timer to ensure the analyzed handwashing data
are longer than 20 s. Therefore, those poorly performed
handwashing actions and extra actions between handwash-
ing actions would not interrupt the analysis of the whole
handwashing procedure. Furthermore, in the future, we
will combine modern smart home appliances such as smart
faucets and smart foam soap dispensers to further ensure
the accuracy of handwashing scenario detection.

4.5.3 Performance of Dynamic Sampling Control
Accurate recognition of handwashing actions requires more
samples to be collected, i.e., a high sample rate. However, it
certainly leads to higher energy consumption and compu-
tational costs. Therefore, we propose to dynamically adjust
the sampling duty cycle based on whether the user performs
handwashing activities. To evaluate the performance of
the sampling control strategy, we randomly simulate the

handwashing activities during 24-hour. As shown in Fig. 16,
when users do not wash their hands, the sampling duty
cycle is kept low to avoid wasting energy. When a hand-
washing activity is detected, the duty cycle will increase to
ensure the sampling result. Different combinations of high
and low duty cycles can be used by our proposed method
on a case-by-case basis. Here we give an example: if we use
75% duty cycle during handwashing and 25% during other
ADLs, AWash can save 50% energy compared with a fixed
duty cycle of 75%. Overall this control strategy is effective
in saving energy consumption.

4.6 Impacts of Various Issues on Handwashing Action
Recognition

4.6.1 Impact of Hybrid Model Structure

In the hybrid model, the number of LSTM network layers
and cells at each layer have an important impact on the
performance of user-independent feature extraction and
handwashing action recognition. After configuring more
than 20 different combinations of model parameters, we
found that system performance can be improved when the
number of layers and memory cells increases. However,
more LSTM layers and memory cells reveal a higher level
of movement information but also lead to higher compu-
tational costs. In order to reduce costs and ensure fine-
grained recognition, we configure the hybrid model with
128 cells and three LSTM layers, which enable AWash to
receive recall, precision, and F1-score higher than 92%.

4.6.2 Long-Term Recognition Performance

Long-term performance is a critical aspect of recognition
performance since the elderly with dementia have unstable
motor abilities, and dementia progresses at different speeds
for a different person. Fig. 17 shows the handwashing action
recognition performance of AWash of all participants over
20 days. After training, the testing data are collected on
the same day, 1 day later, 2 days later, 5 days later, 10
days later, 15 days later, and 20 days later. When using the
data collected on the 20th day for testing, recall, precision,
and F1-score are all above 84%, which is acceptable in real
environments. Moreover, we plan to update the training
data regularly for better performance.

4.6.3 Impact of Sink Height

Sensor-body inclination angles are sensitive to sink heights.
Therefore, we evaluate AWash with data collected in a
children pedestal sink. When using data collected at partici-
pants’ homes for training and data collected at the children
sinks for testing, the leave-one-participant-out-validation
reaches 81.74% recall, 83.50% precision, and 82.10% F1-
score. When we expanded the training data set to include
data collected from children sink, the recall increases to
87.86%, precision increases to 88.16%, and the F1-score in-
creases to 88.07%. Since AWash supports user-independent
handwashing action recognition, we can collect training
data from healthy older adults in various usage environ-
ments to improve system performance.
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4.6.4 Impact of Hardware Difference
To evaluate the robustness and adaptiveness of AWash
against diverse hardware, we implement it with another
two types of wrist-worn prototype, MPU9150 (refereed as
to device B), and ADXL356 (refereed as to device C). They
have different features and prototype size compared to the
default MPU9250-based prototype (refereed as to device A).
We ask the participants to wear the new prototypes and
perform each handwashing activity 30 times. Specifically,
we evaluate AWash in five cases differentiated by the train-
ing dataset and testing dataset: (i) the data collected using
device B are split into 75% training data and 25% testing
data, (ii) the data collected using device C are split into 75%
training data and 25% testing data,(iii) the training data are
from device A, and the testing data are from device B, (iv)
the training data are from device A, and the testing data
are from device C, (v) the data from all devices are mixed
to build a new dataset, 75% are used for training, and the
remaining 25% are used for testing. Table 3 reports the result
for the five cases. Good performance is achieved in case
(i) and case (ii), confirming that our algorithm is robust to
hardware differences and is expected to be implemented
in various commodity devices. Besides, the relatively poor
performance of case (iii) and case (iv) suggest that the
training set from one hardware is not enough to build a
device-independence system. This is mainly due to the size
difference between the two types of hardware. However,
we find that case (v) achieves relatively high performance
compared to case (iii) and case (iv). This motivates us to
regularly update the training dataset to include more device
models so as to improve AWash’s performance.

TABLE 3
Impact of hardware difference.

Case Index Recall (%) Precision (%) F1-score (%)
Case (i) 91.18 90.15 90.66
Case (ii) 88.79 86.81 88.79
Case (iii) 73.16 72.49 72.98
Case (iv) 75.02 74.90 74.96
Case (v) 84.45 83.99 94.22

4.7 Effectiveness of Handwashing Assistance
We ask participants to wash hands three times when only
provided a poster illustrated with washing steps to set up
their handwashing ability baseline. Due to the cognitive
differences of the recruited participants and limited sample
size, it is not feasible to conduct an overall analysis of the
effectiveness of AWash. Therefore, we conduct a within-
subject user study. Participants 1, 2, 3, and 4 with lower
MoCA scores are prompted when they miss handwashing
steps in the overall task. The remaining participants are

prompted when they do not follow the recommended step
order. We validate the effectiveness of the handwashing
assistance provided by AWash by comparing the number
of handwashing actions that participants could perform (for
participants 1-4) and the number of handwashing actions
that participants could perform in the correct order (for
participants 5-8).

Table 4 shows the detailed results of eight participants.
Comparing to baseline, the number of handwashing actions
participants are able to complete increases when using
AWash. Specifically, for participants 1, 2, 3, and 4, they
have the problem of being unable to perform the proper
handwashing actions, organizing handwashing steps, and
repeating obsessive actions. With the help of AWash, they
can follow the audio guidance to wash their hands, perform
missed actions, and stop obsessive behaviors. For partici-
pants 5, 6, 7 and 8, when performing handwashing tasks,
they occasionally make mistakes in planning the handwash-
ing steps and forget one or two actions. When using AWash,
they can reorganize the order of handwashing actions and
execute the missed actions in time. During the 20 days
experiment, there is no significant difference in the number
of actions that participants can perform correctly. The results
indicate that AWash has promising prospects to help the
elderly with dementia complete handwashing tasks.

TABLE 4
Performance of participants in handwashing tasks in three conditions.

Prompt when miss steps
in the overall task

Prompt when perform
steps in wrong order

ID 1 2 3 4 5 6 7 8
Baseline 3.67 3.67 3.00 4.00 4.67 5.00 4.67 5.33

AWash 1st day 5.40 5.40 5.40 5.60 5.80 6.00 5.80 6.00
AWash 20th day 6 5 5 6 6 6 6 6

4.8 User Experience
After the participants experienced the assistance of AWash,
a System Usability Scale (SUS) [29] questionnaire gath-
ers feedback from each participant, which ranks from 1
(strongly disagree) to 5 (strongly agree). SUS consists of 10
items and is suitable for small sample sizes with reliable
results:

1) I think that I would like to use this system frequently.
2) I find the system unnecessarily complex.
3) I think the system is easy to use.
4) I think that I would need the support of a technical

person to be able to use this system.
5) I find the various functions in this system are well

integrated.
6) I think there is too much inconsistency in this system.
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7) I would imagine that most people would learn to use
this system very quickly.

8) I find the system very cumbersome to use.
9) I feel very confident using the system.

10) I need to learn a lot of things before I could get going
with this system.

Fig. 18 summarizes the responses of eight participants.
Five positive statements (question 1, 3, 5, 7, and 9) receive
high scores, and five negative statements (question 2, 4, 6,
8, and 10) receive low scores. The high evaluation of partic-
ipants shows that AWash offers a good user experience.

5 RELATED WORK

Monitoring and promoting systems are founded to be ef-
fective solutions to assist elderly dementia patients with
bathroom routines [30], [31], table-setting [32], tea-making
[33], dressing [34] and toothbrushing [24], [35].

As for handwashing assistance technologies for the el-
derly with dementia, vision-based methods have been em-
ployed. Mihailidis et al. [36] employ cameras to determine
the spatial coordinates of the user’s body and hands and
determine the user’s action and its quality accordingly.
Based on this system, a planning system that uses Markov
decision processes to decide when and how to provide
prompts is presented in [37]. The COACH system [7] tracks
hands using flocks of features, leverages a partially observ-
able Markov decision process method to model different
handwashing actions, and assists users with verbal or visual
prompts. However, the deployment cost of these vision-
based methods is high, which is difficult to get in large-scale
promotion applications, especially in developing countries
and areas. Moreover, the use of cameras in bathrooms brings
many privacy concerns.

Another aspect of relevant work focuses on using wrist-
worn devices, an alternative to the vision-based method,
to monitor or assist with handwashing. The emergence of
smartwatches and fitness bands provides new solutions
for handwashing monitoring. Uddin et al. [8] propose a
wearable sensing framework that provides flexible API to
the activity monitoring applications. They show the case
of handwashing as proof of concept but do not identify
the detailed handwashing actions. Harmony [9] takes the
data of the accelerometer and gyroscope of a smartwatch as
input. It detects the presence of the different gestures based
on the decision tree method and uses the washing duration
to indicate the quality of each handwashing episode. Wrist-
Watch [10] uses a 6-axis Inertial Measurement Unit (IMU)
mounted on a wrist-worn device to record hand movements
and a hidden Markov model-based method to monitor
handwashing routines. WristWash is more practical than
mere action classification because it allows for continuous
recognition. However, both Harmony and WristWash are
primarily designed for younger and healthy adults. They
cannot be directly applied to the handwashing assistance of
the elderly with dementia because the behavior patterns of
senile dementia patients are different from those of younger
adults. Also, existing techniques can not address the signif-
icant diversity in user behavior caused by cognitive ability
diversity. Moreover, previous efforts have the weakness of
only providing a single prompt solution, which can not meet

the needs of senile dementia patients with various cognitive
abilities and executive functioning. Therefore, there is a need
to design a new wearable-based handwashing monitoring
method system for senile dementia patients.

Approaches based on Wi-Fi [38], [39], RFID [40], acoustic
signals [27], [41]–[43], lights [44], [45], and thermal infrared
signals [46] have been widely developed to detect human
activities. However, being sensitive to water, soap foam,
and environmental temperature makes them unsuitable
for handwashing action recognition. Some rings like mag-
netic sensors can accurately recognize gestures [47], but
they should be taken off when washing hands for better
overall cleanliness. Also, Electromyogram (EMG) acquired
from arm muscles contributes to identifying actions [48].
However, senile dementia patients experience difficulties in
adjusting to changes and accepting new things.

Compared with previous solutions, AWash has the fol-
lowing advantages. AWash can address the unique inter-
ference of the elderly, extract user-independent features,
and achieve continuous fine-grained handwashing action
recognition. Besides, it provides different assistance to het-
erogeneous users. Moreover, Awash only relies on commod-
ity IMU sensors and thus can be deployed on the most
affordable wrist-worn devices, which can be more widely
accepted by senile dementia patients.

6 DISCUSSION

The results from the controlled lab study and outside-the-
lab study (conducted at the participants’ homes) show that
AWash is effective in handwashing assisting. AWash can
detect the handwashing scenarios automatically, recognize
six handwashing activities accurately, and model the overall
handwashing performance flexibly. As the first wearable-
based handwashing assisting system for senile dementia
patients, AWash certainly leaves some directions to be fur-
ther explored. First of all, we only demonstrate that AWash
is energy-effective yet do not seriously evaluate the energy
consumption. However, the prototype has an average power
consumption of below 40mA under a 100Hz sampling rate,
which can support long-term use even on energy-limited
smartwatches. We are planning to implement AWash with
commodity devices to fully study the energy consumption.

Second, the experimental results show that AWash
mostly requires about less than 0.9 seconds to recognize
the handwashing activities. This fast information exchange
allows AWash to assist senile dementia patients in getting
real-time assistance Moreover, the low delay may create an
opportunity for AWash to incorporate speech recognition,
Natural Language Processing (NLP), and new modalities,
which are seen as the future direction for implementing
more effective handwashing assistance.

Third, we have focused on detecting handwashing ac-
tivities so far. There are many other daily activities (e.g.,
eating and climbing stairs) that might affect the IMU on
smartwatches in a similar way to handwashing, as they can
be modeled as several unique sub-activities and are periodic
or quasi-periodic. We believe that AWash has the potential
to be extended to assist many more activities, and we are
planning to investigate the diverse pattern of other daily
activities to extend the coverage of AWash.
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Fourth, we only report the comparison between AWash
and existing handwashing recognition approaches and com-
monly used classifiers. There exist some approaches that
successfully exploit the IMU sensors on wearables to enrich
the everyday lived experiences in dementia care [49]. They
mostly focus on searching the significant features from sen-
sory data to realize high-accuracy movement recognition. It
is worth investigating how these feature selection strategies
can be exploited to improve the performance of AWash.

Last but not least, we have only tested AWash with
a proof-of-concept prototype, whose role is to collect and
send the IMU data to a paired laptop via Wi-Fi so far. The
data processing algorithms, deep learning network, and the
assistance component are deployed in the edge server (i.e.,
a laptop in our proof-of-concept study). The design requires
minimal computational capability, thus can be applied by
most existing smartwatches. As a serious push is evident on
the battery life and application development support, im-
plementing data processing algorithms in the smartwatches
becomes possible. For example, WearOS gives access to the
smartwatch’s sensors and the GPU [50]. We are planning to
gradually deploy the algorithms to the smartwatch, even-
tually realizing handwashing action recognition and hand
washing assistance using only smartwatches in the future.

7 CONCLUSION

In this paper, we present AWash, a cognitive assistant tech-
nology that takes a new step in helping the elderly with de-
mentia washing their hands. AWash uses only the IMU sen-
sor on off-the-shelf wrist-worn devices (e.g., smartwatches)
to collect handwashing data. By using a set of novel data
processing technologies, a hybrid network model, and a
transfer learning technique, AWash is capable of recognizing
handwashing actions in user-independent scenarios. The
goal of AWash is to provide timely prompts and guidance on
handwashing routines for older adults with varying degrees
of dementia. For this purpose, we adopt the state machine
that allows users to customize the appropriate guidance.
Experiments are conducted to demonstrate that AWash can
be a potential solution to assist the elderly with dementia in
the handwashing routine.

In the future, we would recruit more participants and
conduct studies on diagnosed patients with different de-
mentia levels via collaborations with medical institutes.
We strongly believe that wrist-worn-based handwashing
assistance has the great potential to significantly improve
the health and life quality of patients with dementia.
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