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Abstract—Free weight training (FWT) is of utmost importance
for physical well-being. However, the success of FWT depends on
choosing the suitable workload, as improper selections can lead
to suboptimal outcomes or injury. Current workload estimation
approaches rely on manual recording and specialized equipment
with limited feedback. Therefore, we introduce PPGSpotter, a
novel PPG-based system for FWT monitoring in a convenient,
low-cost, and fine-grained manner. By characterizing the arterial
geometry compressions caused by the deformation of distinct
muscle groups during various exercises and workloads in PPG
signals, PPGSpotter can infer essential FWT factors such as
workload, repetitions, and exercise type. To remove pulse-related
interference that heavily contaminates PPG signals, we develop
an arterial interference elimination approach based on adaptive
filtering, effectively extracting the pure motion-derived signal
(MDS). Furthermore, we explore 2D representations within the
phase space of MDS to extract spatiotemporal information,
enabling PPGSpotter to address the challenge of resisting sensor
shifts. Finally, we leverage a multi-task CNN-based model with
workload adjustment guidance to achieve personalized FWT
monitoring. Extensive experiments with 15 participants con-
firm that PPGSpotter can achieve workload estimation (0.59 kg
RMSE), repetitions estimation (0.96 reps RMSE), and exercise
type recognition (91.57% F1-score) while providing valid work-
load adjustment recommendations.

I. INTRODUCTION

Free weight training (FWT) has attained remarkable popu-
larity owing to its salient role in fostering muscular strength,
physical well-being, and emotional health. For example, in
the United States, 78.4 million adults participate in FWT
two or more sessions per week [1], illustrating the extensive
participation worldwide. Moreover, with the increasing health
awareness among individuals, FWT engagement is projected
to increase substantially in the forthcoming years. During the
FWT process, selecting an appropriate workload is crucial
for achieving training goals. Experts and institutions empha-
size the need for individuals to determine suitable training
workloads based on their specific circumstances [2]: excessive
workload may lead to injury, while inadequate workload may
hamper progress. Based on this, numerous training workload
models have been proposed, necessitating specialized knowl-
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Fig. 1. An illustration of PPGSpotter scheme.

edge to determine optimal workload and workload adjustment.
However, expertise engagement presents notable challenges to
effective FWT execution, contributing to a significant barrier
for many individuals. For instance, research [3] finds that
more than 80% of participants failed to select the appropriate
training workload without the supervision of a personal coach.

Nowadays, there have been significant developments in
fitness assistance solutions [4]–[7], which offer precise and
personalized feedback for sports like jogging, body-weight
training, and high-intensity interval training. However, re-
search in the field of FWT assisting lags behind. Most
individuals still rely on manual methods to record, calcu-
late, and adjust their workloads using various workload ad-
justment models [8]. To address this, researchers have at-
tempted various devices for automatic workload estimation,
including dedicated equipment-based solutions (e.g., smart
adjustable dumbbells [9], RFID tags [10], and magnetic-cum-
accelerometer [11]) and wearable-device-based solutions (e.g.,
surface Electromyography (sEMG) [12], inertial measurement
unit (IMU) [13], and Photoplethysmography (PPG) [14] sen-
sors). However, these methods are either costly, preventing
widespread deployment, or coarse-grained and have poor
robustness, making it difficult to achieve highly accurate
estimations. Furthermore, there is a notable lack of solutions
providing workload adjustment recommendations. Overall,
more research is needed to advance the level of workload
estimation and adjustment guidance.

Recently, several studies have demonstrated the remarkable
sensitivity of PPG signals to muscle movements, enabling
applications such as chewing detection [15], gesture recog-
nition [16], [17], and EMG estimation [18]. Inspired by them,
we take one step forward by conducting on the relationship
between PPG signals and workload and revealing that different
workloads induce varying degrees of muscle deformations,
which can be captured by a PPG sensor. Based on this,
we propose a convenient, low-cost, and fine-grained FWT



monitoring system named PPGSpotter. It leverages infrared
and green light on a PPG sensor to illuminate wrist skin
and collect optical density changes containing information
regarding muscle movement. By analyzing these changes,
besides exercise type and repetitions, PPGSpotter can estimate
the current workload and further predict the required workload
for the next session based on the most appropriate adjustment
model and training goal. Fig. 1 depicts the application scenario
of the proposed system. Users only need to wear a wrist-worn
device during the training process, and PPGSpotter can act
as a private fitness spotter, monitoring the training process
anytime and anywhere, further avoiding poor training or injury.

Realizing PPGSpotter’s idea is difficult due to three-
pronged challenges. Firstly, the arterial interference induced
by the highly dynamic periodic pulse signal, together with the
target motion-derived signal (MDS), dominates as alternating
current components in collected PPG signals. However, the
two signals are heavily coupled in both time and frequency
domains, making it challenging to separate them directly. Sec-
ondly, the PPG signal is sensitive to sensor position; correcting
data collected at different positions and extracting effective
muscle movement characterization information is challenging.
Last but not least, how to simultaneously achieve multi-task
inference (i.e., regressing exercise workload and classifying
exercise type) from intricate muscle dynamics characterization
information while accounting for each individual’s personal-
ized physiology can be highly non-trivial in practice.

To address the above challenges, we first develop an arterial
interference elimination method utilizing the variable step-
size normalized least mean square (VS-NLMS) to separate the
MDS from arterial interference. Then, for each action segment,
we generate a recurrence plot-based representation image to
capture spatiotemporal information. Moreover, sensor position
shift correction is designed to correct PPG signals collected at
different positions. Next, we propose a multi-task CNN-based
network for workload regression and exercise type classifica-
tion, which can explicitly embed personal information into the
learning model. Meanwhile, a decision tree is used to choose
the most appropriate workload adjustment model and provide
workload adjustment suggestions.

Our main contributions are listed as follows:
• We propose PPGSpotter, the first wearable-based FWT

monitoring system that leverages a low-cost optical PPG
sensor. Through the PPG sensor, PPGSpotter captures the
subtle yet distinctive optical density fluctuations engen-
dered by geometrical alterations of the arterial, which are
elicited by deformations of specific muscle groups under
varying workloads and exercise types.

• We develop a novel arterial interference elimination
method that effectively reduces the impact of pulse noise.

• We design a novel spatiotemporal feature extraction
method based on a recurrence plot that can resist sensor
positional shifts.

• We propose a novel multi-task CNN-based learning
scheme that simultaneously realizes the monitoring of
workload and exercise type.

• We conduct extensive experiments with 15 participants
and six types of FWT under various usage scenarios.
Results show that PPGSpotter achieves a promising per-
formance with an average of 0.59kg RMSE for workload
estimation, 0.96 reps RMSE for repetitions estimation,
and 91.57% F1-score for recognizing exercise type.

II. RELATED WORK

Pioneer studies have shown that motion tracking and fitness
monitoring can be achieved through various devices, including
cameras [6], wearables (e.g., smart glove [19], smartwatch [5],
[20], insole [21]), and wireless devices (e.g., RFID [22], Wi-
Fi [23], mmWave radar [24], acoustic sensor [25], [26]).
These methods, however, are merely capable of perceiving and
tracking exercise types and repetitions, unable to fill the void
in automatic workload sensing in the FWT process.

Recently, there have been active solutions attempting to
assist in automatic recording and estimating workload, which
can be broadly categorized as:

Dedicated-equipment-based solutions. The iSelect [9] is
a smart dumbbell that can perform voice-controlled weight
adjustments from 5 to 50 pounds. FEMO [10] utilizes RFID
tags to identify the weight of each dumbbell used. However,
these methods necessitate dedicated equipment such as smart
dumbbells and RFID readers, incurring prohibitive costs and
limiting practical adoption. W8-Scope [11] employs a simple
magnetic-cum-accelerometer sensor mounted on the weight
stack of exercise machines to infer various attributes of ex-
ercise behavior. However, it identifies common errors offline
and without real-time feedback. Moreover, these solutions still
require a high degree of cooperation from users (e.g., manually
modifying the equipment or maintaining a specific range of
actions), which may easily lead to poor user experience.

Wearable-device-based solutions. Compared to the afore-
mentioned, these solutions engender more versatility by
sensing users rather than equipment. For example, Muscle-
Sense [12] estimates exercise workload using wearable sEMG
sensors and regression analysis. Oboe et al. [27] develop a
custom device with eight sEMG sensors and a 9-DoF inertial
sensor to estimate the weight lifted. However, these methods
rely on the not widely prevalent wearable sEMG, limiting
the wide promotion of the method. Balkhi et al. [13] use
an IMU, an accelerometer, and three force sensors mounted
in a glove for automatic weight detection in sports activities.
PaWLA [14] is a mobile weight recognition system that can
classify the user’s lifted weight into its corresponding label
based on PPG sensors. However, these solutions are coarse-
grained and perform poorly under minor weight differences,
making it difficult to achieve highly accurate workload estima-
tions. Moreover, there has yet to be a solution that has provided
recommendations for corresponding workload adjustments.

To the best of our knowledge, PPGSpotter is the first solu-
tion to achieve personalized and full-process FWT monitoring
that only leverages a PPG sensor, offering the advantage of
convenience, low cost, and fine-grained.



III. PRELIMINARIES

A. Basic of PPG

PPG is an optical technique for the non-invasive detection
of blood volume changes during cardiac cycles and is further
used to detect blood oxygen saturation, pulse waves, and
heart rates. The core principle of PPG relies on the optical
properties of blood and tissue. Specifically, a typical PPG
sensor employs green, red, and infrared (IR) light sources
for illuminating the skin and photodiode chips for measuring
the amount of backscattered light [28], [29]. Fig. 2 shows
the components of the PPG signal. When the light emitted
from the light source penetrates the tissues, a portion of the
light is reflected by the time-varying arterial blood, and the
slight fluctuations of reflected light contribute to the alternating
current (AC) component while the remaining light absorbed in
the venous, capillaries, skin, bones, muscles connective tissue,
etc., contributing to the stable direct current (DC) component.
These two components are detected as periodic optical density
changes in the backscattered light, which is detected by the
photodiode, forming a resultant PPG signal.
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Fig. 2. The components of PPG signal.

B. Intuition of Monitoring FWT Using PPG Signals

According to exercise physiology, muscles contract (e.g.,
isometric, isotonic, concentric, and eccentric contraction [30])
and produce strength output to overcome a given resistance.
The physiological concept of muscle contraction is based
on two variables: length and tension [31], which refers to
the activation of primary active muscle groups that directly
participate in the movement. For example, when doing a
barbell bench press and barbell biceps curl, the pectoralis
major and the biceps produce a significant contraction. Muscle
activation during exercise alters PPG waveforms in an exercise
type- and workload-dependent manner by:

• Muscle activation increases with workloads, but this
relationship is not linear [32]. Further, highly isolated
forces generated in the activated musculature increase the
peripheral vascular resistance and compress the arterial
geometry to different degrees [33]. These can be collec-
tively referred to as muscle tissue effects.

• PPG detects variations in blood volume pulsatile with
each heartbeat; thus, changes in arterial blood flow from
muscle contraction and vascular resistance alter the PPG

(a) F1 (b) F2 (c) F3 (d) F4 (e) F5 (f) F6

Fig. 3. An illustration of six types of free weight training: (a) F1: lateral raise;
(b) F2: dumbbell curl; (c) F3: dumbbell external rotation; (d) F4: dumbbell
deadlift; (e) F5: dumbbell bench press; (f) F6: seated dumbbell press.

F1 F2 F3 F4 F5 F6Still

Volunteer 1
1.5kg

Volunteer 1
2kg

Volunteer 2
2kg

Fig. 4. The recurrence plots of PPG samples collected from different
volunteers, exercise types, and workloads.

waveform. In other words, the PPG sensor can capture
muscle tissue effects.

In short, the PPG signal develops a unique trend as vascular
compression changes with workloads, and distinct muscle
groups exhibit unique PPG signatures when activated during
specific exercises. Therefore, PPG is expected to provide an
inexpensive and unobtrusive modality to monitor FWT.

C. Feasibility Studies

Given the aforementioned background, we hereby conduct
an experiment with two volunteers to validate the basic idea
of leveraging the PPG sensor on wrist-worn devices for
capturing exercise type and workload information. During the
experiments, users wear an off-the-shelf PPG sensor on the
radial artery placement of the right wrist and perform six types
of typical dumbbell exercises (as shown in Fig. 3) with two
loads (i.e., 1.5 kg and 2 kg). Note that the six free weight
training are deliberately chosen to encompass a diverse range
of upper-body muscle groups and movement patterns.

We extract IR PPG signals within the time window between
the start and end points of each action and generate the
corresponding recurrence plots, introduced in Section IV-C,
as shown in Fig. 4. We can easily observe that: i) when
comparing recurrence plots of PPG signals generated by dif-
ferent exercises, significant differences can be observed. This
is because each exercise elicits specific muscle contractions
and movement patterns, which influence the blood flow and
subsequent PPG signal characteristics. ii) various loads applied
can result in subtle differences in the PPG signals, even when
considering the same user and exercise type. These differences
arise due to the distinct muscle contractions associated with
different loads, which exert varying effects on the compression
program of blood vessels. iii) moreover, recurrence plots of
PPG signals can also exhibit variations among different users
due to the inherent individual differences in human physiology
and vascular response, such as variations in blood vessel
elasticity, tissue composition, and vascular anatomy.



Remarks: Therefore, we can conclude that the different
workloads and exercise types should affect the PPG signal
patterns captured in wrist-worn devices. Meanwhile, cross-
user distinctions highlight the importance of personalization
in FWT monitoring systems, as individual physiological char-
acteristics should be considered to ensure accurate and reliable
monitoring results.

IV. SYSTEM DESIGN

A. Overview

The basic idea of PPGSpotter is to utilize the optical PPG
signal collected by wrist-worn devices for FWT monitoring.
Fig. 5 shows the overall design of PPGSpotter in which the
two-wavelength (infrared and green light) PPG signals are
taken as the system input.

Arterial Interference Elimination is conducted to disentan-
gle the MDS in noisy PPG signals. Specifically, we first utilize
the Butterworth lowpass filter to remove high-frequency inter-
ference. Then, we calculate an arterial interference reference
signal by subtracting the two-wavelength signals and conduct
VS-NLMS to remove the arterial interference while extracting
the pure MDS.

During Spatiotemporal Feature Extraction, we use the mov-
ing window to detect starting and ending points on MDS
to achieve action segmentation and repetitions estimation.
For each action segment, as a novel spatiotemporal feature,
a recurrence plot is generated. Finally, we correct signals
collected at different positions based on principal component
analysis (PCA) to avoid the loss of accuracy caused by the
movement of the sensor position.

In Personalized Free Weight Training Monitoring, we adopt
a multi-task CNN-based deep learning model to simultane-
ously realize the monitoring of workload and exercise type.
Then, the workload adjustment guidance selects the most
suitable workload adjustment model according to the user’s
status and goals, and gives workload adjustment suggestions.

Finally, PPGSpotter can act as a personalized fitness spotter,
achieving a convenient, low-cost, and fine-grained FWT moni-
toring with four results (i.e., current workload, next workload,
repetitions, and exercise type).

B. Arterial Interference Elimination

To extract MDS in PPG signals, we need to remove the
high-frequency and arterial interference in the collected IR
PPG and Green PPG signals.

1) Signal Preprocessing: Since the PPG signal is mainly
concentrated below 5 Hz, we use a fourth-order Butterworth
lowpass filter with a cutoff frequency of 5 Hz to remove
high-frequency interference. Subsequently, the signal range is
scaled to the bound [−1, 1]. However, there is still significant
interference from the artery, which mainly refers to the highly
dynamic periodic pulse signal.

2) Arterial Interference Reference Generation: The source
of the PPG signal is the optical density transmitted or reflected.
According to Schuster’s theory [34], which is one of the
basic theories of optical scattering, the relationship between
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Fig. 5. System architecture of PPGSpotter.

the optical density changes ∆A, and blood vessel thickness
changes ∆Db for a given blood vessel can be expressed as:

∆A = [
√

Eh(Eh + F )Hb + Zb]∆Db, (1)

where Eh = sEo + (1 − s)Er in which Eo and Er

represent the extinction coefficients of oxyhemoglobin and
deoxyhemoglobin; s represents the blood oxygen saturation.
F represents the scattering coefficient. Hb is the concentration
of hemoglobin in the blood. Zb is a constant independent of
the wavelength of the projected light source and approaches
zero when the optical receiver is sufficiently wide.

Considering the effect of muscle tissue, one of the main
sources of optical density fluctuation, Eqn. (1) is modified
as [35]:

∆A =
√

Eh(Eh + F )Hb∆Db + Zb∆Db + Zt∆Dt, (2)

where Zt is a constant independent of the wavelength, and
∆Dt is the thickness change of the muscle tissue.

As shown in Fig. 2 and Eqn. (2), when the human body re-
mains stationary, the tissue thickness change ∆Dt approaches
zero. Then, the effect of tissue on the collected PPG signal
is manifested as the DC component. However, the situation
studied in this paper is various motions exist, and the effect
of tissue is no longer constant and becomes AC component.
For example, in Fig. 6(a) and Fig. 6(b), the IR and Green PPG
signals have fluctuations caused by the first type of FWT (i.e.,
F1). Note that the two signals take on different morphologies
since infrared light can penetrate the skin and reach arteries
in the subcutaneous tissue, while green light can only reach
superficial capillaries [28]. We face the challenge of combined
AC effects of the pulse signal and MDS. Therefore, we need
to treat the pulse signal as interference and separate it from
the original signal to obtain a clean MDS for subsequent FWT
monitoring.

Since the frequency of the MDS in motion is similar
to the frequency of pulse interference, traditional methods
like high-pass filtering and down-sampling will cause dis-
tortion of time domain information. Blind source separation
techniques like independent component analysis (ICA) and
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(b) Green PPG signal.
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(d) The acquired MDS.

Fig. 6. An example of arterial interference elimination method.

principal component analysis (PCA) also have limitations:
they struggle to accurately isolate the two mixed sources with
very similar spectral content. Alternatively, adaptive filtering
has the advantage of being able to adjust filter coefficients
according to the characteristics of the input signal, making
it suitable for handling sources with overlapping frequency
content. Motivated by this, we propose an adaptive filtering
method to analyze PPG patterns caused by muscle tissue
effects and obtain fine-grained motion features.

Specifically, we employ two wavelengths to first cancel
out the effects of Zt and Zb that are independent of the
wavelength [35], and then obtain an arterial interference ref-
erence signal from the artery that is linearly correlated with
the pulse signal. Specifically, we subtract optical densities
corresponding to the two-wavelength PPG sensor:

∆Ar =
√
Ei

h(E
i
h + F )(Hi

b∆Di
b)

−
√
Eg

h(E
g
h + F )(Hg

b∆Dg
b ),

(3)

where i and g represent infrared and green wavelengths.
This noise reference signal ∆Ar is related to the arterial
vascular component and unrelated to the muscle tissue effect,
as shown in Fig. 6(c). Therefore, the adaptive filter can use
this interference reference signal to remove the pulse signal
and obtain the desired MDS.

3) Adaptive Filter-Based Arterial Interference Removal:
The LMS algorithm is widely used in signal denoising with
simple principles and stable performance. However, there is a
contradiction between the steady-state error and convergence
rate after convergence [36]. Although the normalized LMS
algorithm resolves the above contradiction by normalizing
the convergence step size factor to the signal power, the
fixed normalized step size factor is not conducive to better
accelerated convergence. To this end, we propose VS-NLMS
algorithm, which introduces an attenuation factor to make the
step size factor change with the number of iterations, with
both a faster convergence rate and a more effective balance of
convergence rate and steady-state error.

Specifically, the expression of the step size factor is as
follows:

µ(n) =
β
(
1− exp

(−α
n

))
γ +X⊤(k)X(k)

, (4)

where n is the number of iterations; β is a constant that
controls the convergence speed and satisfies 0 < β < λmax

(λmax is the maximum eigenvalue of the auto-correlation
matrix of the input signal); α is also a constant that affects
the steady-state error of the algorithm; γ is a small amount
between 0 and 1 to prevent the step value being too large;
X(k) is the input signal. The weight coefficient iteration
process is as follows:

W (k + 1) = W (k) + 2µ(n)e(k)X(k), (5)

where e represents the error. Specifically, we focus on noise
removal analysis in IR PPG signals since it can better capture
muscle tissue movement information during motions. As a
result, the acquired MDS is solely represented by one channel,
as illustrated in Fig. 6(d).

C. Spatiotemporal Feature Extraction

The shift in sensor position can significantly distort the
acquired PPG waveforms [37] and completely overwhelm the
exercise- and workload-specific PPG patterns, making FWT
monitoring task highly susceptible to positional noise. We
focus on extracting nuanced spatial dynamics by generating
a recurrence plot to map each PPG segment into a two-
dimensional phase space. Rotational alignment of the recur-
rence plot axes then allows us to disentangle the positional
and exercise factors projecting out the spatial artifacts while
retaining the core exercise dynamics along the aligned axes.
The recurrence plot provides an information-rich representa-
tion, while the alignment imposes spatial invariance critical
for generalization.

1) Repetitions Estimation: We design an improved moving
window method to detect valley values of MDS, segment
the signal based on the signal period, and obtain repetitions.
Specifically, we locate the first valley v1 according to findpeaks
algorithm [38], use auto-correlation algorithm [39] to calculate
the period p1 of the signal in the first 15 seconds, and set initial
value of jump step t as p1. Then, the position of the second
valley v2 is detected by finding the minimum among data
points of which abscissa is within the scope of t/3 from v1+t,
and then updating the jump step t = v2 − v1, and so on. The
improved moving window method uses skip-detection, thus
reducing computational complexity. Meanwhile, updating the
detection window’s jump step and length in real-time based on
the current period makes the improved algorithm more stable
and accurate.

2) Spatiotemporal Representation Image Generation: Re-
currence plot is an innovative visualization technique that
unravels the hidden recurrent patterns and complex dynamics
in time series data. In this work, we construct a recurrence plot
for each PPG segment, which provides two major advantages
tailored for exercise analysis: First, the recurrence plot encodes
the temporal dependencies and spatial fluctuations of the PPG
waveform, thus preserving critical spatiotemporal information
for estimating workload and recognizing exercise types. Sec-
ond, the 2D image representation enables the extraction of
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Fig. 7. The process of recurrence plot generation.

spatiotemporal features using CNN, allowing robust feature
learning without cumbersome feature engineering.

Fig. 7 shows the process of recurrence plot generation.
Firstly, we transform each point pm in the time series into the
corresponding state s⃗m in the phase space. Then, the distance
(vector norm) between every two states is calculated. Next,
threshold binarization is performed to obtain the characteristics
between two corresponding states in the recurrence plot. In
short, the primary idea of recurrence plot is to disclose the
trajectory movements from the current state to the previous
state, and it can be formulated as:

Rm,n = θ(ϵ− ∥s⃗m − s⃗n∥),m, n = 1, . . . , Q, (6)

where Q is the number of states s⃗; Rm,n is a Q ×Q square
matrix; ϵ is a threshold value for determining the neighborhood
of states; θ is the Heaviside (step) function. The recurrence
matrix R contains two sets of values called textures and
typologies. The texture information belongs to single dots,
diagonals, vertical lines, and horizontal lines. The typology
information is classified into homogeneous, regular, drifting,
and disrupted types.

3) Sensor Position Shift Correction: Through repeated ex-
periments, we can find that under the premise of the same
user, workload, and action, there are differences in curve
shape and signal amplitude of PPG signals collected from
different positions of the wrist. Generated recurrence plots also
exhibit obvious and complex rotation phenomena. Therefore,
we propose to calibrate signals collected at different positions
to have similar recurrence plot representations based on PCA.
This approach can align each recurrence plot’s axes to its
principle directions and ensure that the variance is maximal
in the direction of rows or columns, thus resisting sensor
positional shifts.

Specifically, we first record the recurrence plots from mul-
tiple sensor positions and find the center of gravity (xc, yc)
for each recurrence plot, which can be expressed as:

xc =

∑
I

∑
J j · p(i, j)∑

I

∑
J p(i, j)

, yc =

∑
I

∑
J i · p(i, j)∑

I

∑
J p(i, j)

, (7)

where I and J represent the number of columns and rows;
p(i, j) is the pixel value. Then, we establish two-dimension
coordinate system on the center of gravity as the origin and
record all the coordinates (xi, yi) (where xi and yi are the
number of columns and rows) in which the gray value of
the recurrence plot image is not 0. Next, for each image, all

the coordinates in rows are arranged and formed an N × 2
matrix L. To perform feature centering on L, the mean of
each column is calculated and then subtracted from each
element in the dataset, respectively, resulting in a new dataset
L1. Then, we calculate a relevant covariance matrix SL1 and
two orthonormal eigenvectors with two eigenvalues that are
associated with each other:

SL1 =
1

N − 1
L1⊤L1. (8)

In the 2D coordinate space, each feature vector calculated by
Eqn. (8) is 2D, reflecting a straight line in the space. These two
feature vectors are orthogonal, thus forming a new coordinate
system where points along one direction have max feature
variance and along the other direction have min feature vari-
ance. For consistency, the original coordinate system is rotated
by the smallest angle to align with the new coordinate system
and make the vertical direction have the maximum feature
variance. Then the directions of feature vectors are adjusted
according to the current coordinate system directions, yielding
a new feature vector matrix V. Nest, for each pixel of rotated
image, use inverse transformation [x′′

i , y
′′
i ] = [x′

i, y
′
i] · V −1,

where [x′
i, y

′
i] represents a pixel in the rotated image, and

[x′′
i , y

′′
i ] represents a pixel in the original image, to find the

corresponding pixel of the original image. Finally, we employ
bilinear interpolation to fill in the missing pixel points and
resize each image to 128×128 resolution. This process ensures
consistency and uniformity across all images. Finally, we can
get a corrected image for each original recurrence plot image.

D. Personalized Free Weight Training Monitoring

We design a novel multi-task CNN framework for workload
regression and exercise type classification. This approach
automatically extracts robust feature representations from in-
put recurrence plots without relying on predefined manual
features or expert knowledge. A key innovation is the explicit
incorporation of personal information (age, gender, height,
and weight) into the learning model, enabling consideration
of individual physiological characteristics for accurate and
reliable results. Additionally, we construct a decision tree
to select the optimal workload adjustment model based on
exercise type and current workload level, further enhancing
the system’s performance.

1) Multi-Task CNN-Based Network: Fig. 8 shows the pro-
posed multi-task CNN-based network. The recurrence plot
for each action segment of MDS is the input of the CNN-
based network. In addition, we incorporate the user’s personal
information (i.e. age, gender, height, and weight) into the
learning model to achieve a personalized FWT monitoring
framework. Besides the six exercise types, we also define a
NULL class to represent unknown exercise types outside the
defined classes, such as the extra actions caused by switching
between actions. The output contains class labels and the
estimated workload (estimation results for NULL classes will
be discarded).

Given that the appearance of recurrence plots is usually
globally similar and locally different, both global and local



FC
11

FC
12

C
on

v1

C
on

v2

M
ax

 P
oo

lin
g

C
on

v3

C
on

v4

M
ax

 P
oo

lin
g

C
on

v5

C
on

v6

M
ax

 P
oo

lin
g

FC
7

FC
8

Conv: Convolutional layer; FC: Fully-connected layer
FC

13
FC

13

FC
9

Workload RegressionFC
10

Age

Gender

Height

Weight

SoftMax

Recurrence 
Plot 

Multi-Task CNN-Based Network

Personal 
Information Exercise Type Classification
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structural information are important for classification and
regression tasks. To capture the local structural information of
recurrence plots, six convolution blocks are used; each block
involves a 2D-convolution layer using a rectified linear unit
(ReLU) activation function. The six convolution layers use 32,
32, 64, 64, 128, and 128 kernels, respectively, and the kernel
sizes are 3 × 3. Specifically, Conv2, Conv4, and Conv6 are
followed max pooling layers for down-sampling to learn the
locally salient information. Two fully-connected (FC) layers
(i.e., FC7 and FC8) are with 128 and 64 units.

We then add two additional FC layers (i.e., FC9 and FC10)
with 64 and 68 units to model the global structural information
of recurrence plots. In addition, the cascaded representation
of the output of FC10 and the personal information (i.e., age,
gender, height, and weight) are fed into two FC layers (i.e.,
FC11 and FC12 with 64 units). Finally, two FC13 layers
with 32 units are used to predict the class probability through
Softmax and estimating the workload, respectively.

The objective function of the proposed CNN-based network
is as follows:

argmin− 1

C

C∑
c=1

1

N

∑
Xn∈X

1 {yc
n = c} log (P (yc

n = c|Xn))

+
1

N

∑
Xn∈X

(zsn − z̃sn)
2 ,

(9)

where X = {Xn}Nn−1 denotes the training set including N

TABLE I
FOUR FREQUENTLY-USED WORKLOAD ADJUSTMENT MODELS.

Model Name Basic Description

Linear loading [40] (i) Increase load by fixed value each session
(ii) Inputs: current load, increment

Two-for-two rule [41]

(i) Increase load if two more reps are completed
over the recommended goal during two consec-
utive training sessions
(ii) Inputs: current load, rep range, increment

Pyramid rule [42] (i) Begin with lighter loads and higher reps, then
gradually decreases reps and increase workload
(ii) Inputs: current load, 1RM, rep ranges, incre-
ment or decrement

RM zones [43] (i) Select the heaviest load that can be lifted for a
given repetition range with the goal of reaching
muscular failure on the final set of the exercise
(ii) Inputs: current load, RM Range, 1RM, load-
rep relationship charts

PPG Sensor

Evaluation Board

Fig. 9. PPGSpotter prototype.

recurrence plots. C = 6 represents six different exercise types.
1 {·} is an indicator function, with a value of 1, if {·} is true;
and 0, otherwise. P (ycn = c|Xn) indicates the probability of
Xn being correctly classified as the category ycn. zsn and z̃sn
are estimated workload and the ground truth, respectively. In
short, the first term is the cross-entropy loss for multi-class
exercise type classification, and the second one is the mean
squared loss for regression to evaluate the difference between
the estimated workload and the ground truth.

2) Workload Adjustment Guidance: Optimizing workload
management is imperative to continually induce physiological
adaptation, thus avoiding poor training or injury. However,
finding the ideal workload adjustment model remains challeng-
ing due to individual differences. To address this, we propose
a decision tree scheme to automatically choose one of four
frequently-used workload adjustment models, which consist
of linear loading, the two-for-two rule, pyramid rule, and
repetition maximum (RM) zones based on the user’s status.

Specifically, the decision nodes include the user’s experi-
ence level (beginner or advanced), recent training effectiveness
(progress or plateau), and targeted training goal (hypertrophy
or strength). Each node contains binary categories. The deci-
sion tree is built via a recursive partitioning process based on
these nodes and values. For beginner trainees (i.e., defined as
individuals with less than three months of training age), linear
loading with fixed inter-session increments is recommended.
The two-for-two rule is appropriate if the advanced user
continues making gains. When plateaued, pyramid rule is
suggested for hypertrophy goals, while RM zones are optimal
for further strength gains. We compare the key features of each
model in Table I.

While simplistic models like linear loading can suffice for
novices, complex models may obviously enhance efficiency
and continued progress for advanced users. PPGSpotter allows
for hierarchical decision-making as the user becomes more
proficient with an individual’s changing status and goals.

V. EVALUATION

A. Experimental Methodology

1) Implementation: In our proof-of-concept implementa-
tion, we build a prototype consisting of an off-the-shelf PPG
sensor (with green and infrared light) and an embedded
evaluation board as a smartwatch alternative, as shown in
Fig. 9. During the FWT process, the PPG sensor readings are
recorded with a sampling rate of 200Hz, and an experienced
fitness coach is arranged in front of the participants to record
the ground truth.
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2) Data Collection: We recruit 15 participants, including
8 males and 7 females (aged between 19 and 42), to conduct
six types of FWT for evaluation. Their training ages range
from 0 to 6 years. In particular, we include 5 participants with
no fitness experience to verify that our approach is appropriate
for not only gym enthusiasts but also regular users. This study
is conducted with the approval of our institute’s IRB. After a
brief training session on standard action, we ask participants
to wear the prototype closely on the radial, center, and ulnar
zone placement of their right wrist, respectively. For each
participant, we first determine their 1RM for each exercise
type through standardized strength testing protocols. Based on
these results, we define a personalized 60%-80% 1RM range
(incremented in 0.5kg) as the workload collection interval for
that individual. The entire data collection process takes one
month, and we finally collect over 5, 000 repetitions of each
participant for training and evaluation.

3) Evaluation Metrics: We utilize the following metrics to
evaluate the performance of PPGSpotter:

Root Mean Squared Error (RMSE). The standard devi-
ation of the workload or repetitions prediction errors, which
is defined as

√
1
n

∑n
i=1(ŷi − yi)2, where n is the number of

samples, yi is the ground truth value, and ŷi is the predicted
value of workload or repetitions. Lower values of RMSE
indicate better estimation accuracy.

Precision. The percentage of the action segments correctly
recognized as type A among all the number of segments
predicted as the action type A.

Recall. The percentage of the segments that are correctly
recognized as the action type A among all segments of the
action type A.

F1-score. The harmonic mean of precision and recall, which
is defined as F1 = 2 · recall·precision

recall+precesion , where an F1-score
reaches its best value at 1 and worst at 0.

B. Overall Performance

To evaluate the overall performance of PPGSpotter, we
conduct experiments with all participants performing six types
of exercises (as shown in Fig. 3). Specifically, personalized
models are built for each participant. Moreover, we use 80%
of the data for training, the rest 20% for testing, and conduct
five-fold cross-validation.

1) Workload Estimation Performance: Fig. 10 presents the
RMSE for workload estimation across all 15 participants. We
can find that the RMSE results range from 0.32 kg to 0.89 kg

across participants, indicating accurate workload prediction
with an average error of 0.59 kg. In particular, participants
#5 and #15 have the lowest estimation errors. This could be
because they likely have relatively rich fitness experience and
standard exercise forms, which allow the sensor to capture
more stable and reliable information during the FWT process.

2) Repetitions Estimation Performance: Fig. 11 presents
the RMSE for repetitions estimation across all 15 participants.
We can find that the RMSE results vary between 0.68 reps and
1.15 reps, with an average error of 0.96 reps. This indicates
PPGSpotter can reliably track repetitions during FWT process,
with most participants obtaining errors below 1 rep per set
on average. Overall, the low average RMSE demonstrates
the robust performance of PPGSpotter in counting exercise
repetitions in varied realistic scenarios.

3) Exercise Type Classification Performance: We report the
average precision, recall, and F1-score for recognizing the six
types of FWT in Fig. 12. For each type, we calculate the av-
erage value among different participants. Overall, PPGSpotter
achieves mean precision of 91.55%, recall of 91.59%, and
F1-score of 91.57%, indicating accurate recognition of exer-
cise types. All exercise types receive F1-scores above 85%,
demonstrating reliable recognition. In addition, F3 (dumbbell
external rotation) and F6 (seated dumbbell press) have more
similar motion patterns, resulting in F1-score lower than 90%.

C. Key Algorithms Study

1) Impact of Adaptive Filter Methods for Arterial Interfer-
ence Elimination: We compare our proposed variable step-
size normalized LMS (VS-NLMS) against standard LMS and
NLMS filters for adaptive filter-based arterial interference
elimination tasks. Fig 13 shows the box plot of workload
estimation and exercise type classification results for each
method. Specifically, VS-NLMS achieves an average RMSE
of 0.59 kg for workload estimation, significantly lower than
NLMS (0.72kg) and LMS (0.93kg). Additionally, for exercise
type classification, VS-NLMS attains the highest average F1-
score of 91.57%, compared to 87.20% for NLMS and 85.05%
for LMS. This demonstrates that VS-NLMS successfully sup-
presses erratic arterial noise for accurate workload estimation
and exercise type classification, validating the effectiveness of
our proposed interference elimination technique.

2) Effectiveness of Sensor Position Shift Correction: To
evaluate the effectiveness of our proposed algorithm in cor-
recting sensor shifts, we compare workload estimation and



80

85

90

95

100

0.0

0.5

1.0

1.5

2.0

S1 S2 S3

Percentage (%
)

R
M

SE
 (k

g)

Sensor Position

RMSE
Recall

Precision 
F1-score

Fig. 14. Impact of sensor position.

50

60

70

80

90

100

110

0.0

1.0

2.0

3.0

4.0

5.0

6.0

50 55 60 65 70 75 80 85 90

Percentage (%
)

R
M

SE
 (k

g)

Training Data Size (%)

RMSE
Recall

Precision 
F1-score

Fig. 15. Impact of training data size.

50

60

70

80

90

100

110

0.0

0.5

1.0

1.5

2.0

50 100 200 400

Percentage (%
)

R
M

SE
 (k

g)

Sampling Rate (Hz)

RMSE
Recall

Precision 
F1-score

Fig. 16. Impact of sampling rate.

0.0

0.2

0.4

0.6

0.8

R
M

SE
 (k

g)

1 2 3 4 5 10 15 20 25 30
Day

Fig. 17. Long-term performance.

exercise type classification performance across three sensor
positions of the right volar wrist (S1: radial zone, S2: center
zone, S3: ulnar zone). As shown in Fig 14, our proposed im-
age calibration algorithm demonstrates consistent performance
across different sensor positions on the wrist. Specifically, the
workload estimation REMS remains lower than 0.65kg regard-
less of the sensor shifts from the radial zone to the ulnar zone
of the volar wrist. Furthermore, the exercise type classification
accuracy shows a minimal variation (<3%) between the three
sensor positions tested. These indicate that image calibration
generalizes well and retains robustness power for workload
estimation and exercise type classification.

3) Performance of Multi-Task CNN-Based Network: We
compare the impact of training data size on system perfor-
mance by varying the training data size from 50% to 90%.
Specifically, we incrementally increase the training data in 5%
increments, training the model each time for each participant.
We then test on the remaining data sets and record the results.
The results are shown in Fig. 15, which demonstrate that as
training data increases, RMSE of workload estimation steadily
decreases from around 5.57kg to 0.50kg; F1-score of exercise
type classification increases from around 51.21% to 91.66%.
After 80% of the training data size, the CNN-based network
achieves lower than 0.60 kg RMSE and higher than 91% F1-
score, which supports our choice of 80% training data for CNN
in the experiments for making an optimal trade-off between
data training time and accuracy.

D. Impact of Sampling Rate
The sampling rate is closely linked with the system per-

formance, for low sampling rates probably reduce the recog-
nition performance, while high sampling rates bring greater
time costs. We evaluate PPGSpotter specifically under several
different sampling rates including 50Hz, 100Hz, 200Hz, and
400Hz. Fig. 16 shows the RMSE of workload estimation and
precision, recall, and F1-score of exercise type classification
at the above sampling rates. We can observe that the system
performance improves continuously when the sampling rate
increases from 50Hz to 200Hz. However, the improvement is
no longer significant when the sampling rate reaches around
200 Hz. The results indicate that the workload estimation
and exercise type classification achieve pretty exceptional
performance with the RMSE of 0.59 kg and precision, recall,
F1-score of 91.55%, 91.59%, and 91.57% when PPGSpotter
uses a sampling rate of 200 Hz. Thus, 200 Hz is adopted in
this work.

E. Long-Term Performance

Long-term studies can provide insights into potential chal-
lenges, such as muscle growth and body dimension changes,
allowing us to refine the system accordingly. Over a one-month
period, we periodically evaluate PPGSpotter’s performance by
testing it on new data from each participant collected at 1, 2, 3,
4, 5, 10, 15, 20, 25, and 30 days, and the results are shown in
Fig. 17. Particularly, we update the training data and personal
information by collecting new examples every week. With
this updated training data, PPGSpotter maintains a workload
estimation RMSE under 0.8 kg across the evaluation period.
The results highlight the importance of updating training data
periodically to account for long-term changes in input data
distribution. Overall, PPGSpotter demonstrates satisfactory
robustness and stability on long-term testing.

VI. CONCLUSION AND FUTURE WORK

This paper proposes PPGSpotter, the first FWT monitoring
system that relies on PPG sensors available in ubiquitous
wrist-worn devices. It tracks optical density change caused by
the muscle tissue deformation during exercise execution and
achieves fine-grained monitoring of current workload, repeti-
tions, and exercise type. More importantly, PPGSpotter pro-
vides users with personalized recommendations for workload
adjustment, enhancing training efficacy and reducing the risk
of injury. To extract the MDS from the PPG signal, we propose
an arterial interference elimination method to eliminate the
highly dynamic periodic pulse signal interference. Then, we
introduce a recurrence plot-based representation extraction
method that captures spatiotemporal information and resists
shift of the sensor position. To enable personalized moni-
toring, we design a multi-task CNN-based learning scheme
that incorporates users’ basic information and simultaneously
performs workload regression and exercise type classifica-
tion. Additionally, the workload adjustment guidance model
is designed to select the most suitable workload adjustment
model, further providing next workload suggestions. Through
extensive experiments involving 15 participants and six types
of FWT, we demonstrate the practical usability of PPGSpotter.

Future plans for PPGSpotter involve exploring the in-
fluence of other gravity-resistant devices, such as barbells
and kettlebells. Investigating the effect of such device-related
exercises on PPGSpotter can provide valuable insights into its
applicability and limitations in different exercise modalities.
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