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Abstract—Handwritten signature authentication is a crucial
service to defend against fraudulent activities. Existing automated
solutions rely heavily on dedicated devices that are expensive and
require different user efforts that affect the user experience. In
this paper, we propose a new signature authentication system,
PPGSign, which leverages Photoplethysmography (PPG) sensors
in the existing wrist-worn wearable devices. The unique blood
flow changes in the supplicant’s hand movement are exploited
in this system to validate the signature. To make PPGSign non-
intrusive and secure, we explore effective algorithms to separate
the signature signals from the heartbeat signals in the raw PPG
signals. We build a low-cost hardware prototype to verify our
proposed method. Our experimental results show that PPGSign
can achieve an average F1 score of up to 98%, which verifies the
feasibility and efficiency of the proposed solution.

I. INTRODUCTION

Paper checks continue to lead the way of transactions at

financial institutions and are susceptible to fraudulent attacks.

Besides paper checks, other important legal and financial

documents still require handwritten signatures to verify a

person. Attackers try to forge those signatures in order to

bypass the system to conduct their fraudulent activities. To

help prevent these fraudulent activities, different automatic

handwritten signature authentication systems [1] have been

developed. These include offline solutions based on image

processing [2], and online solutions based on cameras [3] or

touch screen/digital signing pads [4]. Most recently, solutions

based on motion sensors on wearable devices [5], [6] and

acoustic sensors on mobile devices [7] have also been used for

signature authentication. These methods enjoy the low cost,

non-intrusiveness, and easy deployment. However, many of

them still require users’ extra effort (for calibration or training)

and suffer from low accuracy (due to environmental noises or

attacks). Therefore, there is still a need for new low-cost, non-

intrusive, pervasive, robust signature authentication methods.

Photoplethysmography (PPG) sensor nowadays can be

found in many wearable devices (e.g. smartwatches and fitness

trackers) and has been used to monitor pulse rate and other

health aspects [8]. The optical signal reading from PPG

sensors can estimate the changes in the blood volume under the

skin, thus has been widely used in medical applications. With

the increasing popularity of wearables equipped with built-in

PPG sensor, PPG-based biometric authentication has emerged

as one of the important non-intrusive mobile authentication

methods [9], [10], recently.

Classifier

Signature 

Authentication 

System

Smart Device 

with PPG Sensor

User

Attacker

Forged Signature

Real Signature

Classification Model

Server

Fig. 1. Handwritten signature authentication via PPG sensor.

Different from user authentication, in this work, we propose

a signature authentication system to verify user’s handwritten

signatures by leveraging the PPG data from a wrist-worn

wearable (Fig. 1). Currently, in financial institutions, the user’s

signatures are either manually verified or automatically veri-

fied by an online signature authentication software on a tablet

or dedicated smart device. Instead, we exploit PPG sensor from

wearable devices to capture the dynamic information of the

blood volume change under the skin when a user is writing

his signature. Our solution is also different from existing

PPG-based user authentication since a handwritten signature

is beyond traditional user authentication. We more focus on

the dynamic part of PPG-signal caused by the hand/finger

movements. The main contributions of this paper include:

• We propose a handwritten signature authentication system

(PPGSign) leveraging PPG sensors in wrist-worn wear-

ables. According to our knowledge, PPGSign is the first

work that purely uses a PPG sensor for non-intrusive and

secure handwritten signature authentication.

• We have explored several segmentation algorithms to

separate the signature signals from the raw PPG signal

consisting of both heartbeat and signature signals.

• We build a low-cost hardware prototype of PPGSign

using a commercially off-the-shelf (COTS) PPG sensor

and a micro-controller to evaluate the feasibility of the

proposed system. The experimental results show that

PPGSign can achieve an average F1 score of up to 98%.

II. PROBLEM, MODEL AND CHALLENGES

The signature authentication problem studied here is pri-

marily a verification problem over a handwriting signature via

wearable sensing data. A user will give sensing data of his

signature to claim to be a certain person. The system should
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Fig. 2. Challenges of PPGSign: (a) different PPG pulse signals from the same
user; (b) locations for PPG sensor placement.

verify the claim whether the user is a legit or illegitimate user.

Usually, a user first registers into the system by providing

sensing data of his own signature. The system is trained on

that registered signature to create a model based on the features

extracted from that signature. As shown in Fig. 1, when a new

signature input is given, the system based on the saved models

decides whether the user is a legitimate user or an attacker.

The data of the signature can be collected via different

sensors, such as using additional hardware (e.g., cameras,

signature pads, or custom-built sensors) or leveraging the

COTS smart devices (e.g., smartwatches or wristbands). In

this work, we leverage a single Photoplethysmography sensor

(which is commonly available on most wrist-worn wearable

devices) to collect PPG data during the signature. Since the

trajectory of the used pen affecting the blood flow of the user’s

wrist, such an effect is reflected upon the PPG reading samples

over time. We use S(n) (n ∈ {1, · · · , N}) to represent the

sampled data, and the sampling rate is 100 Hz.

Our system tries to prevent fraudulent activities in scenarios

where an illegitimate user is trying to forge a signature to claim

to be a different person. The security model consists of four

main entities, as shown in Fig. 1:

• Users: This is the authorized person who should be the

only one to be approved by the system. A user registers

his signature in the system wearing the smartwatch with a

built-in PPG sensor. The system trains on those registered

signatures to create a model which later verifies the user.

• Smart Devices: Smart devices (such as wrist-worn wear-

able devices) have a built-in PPG sensor to collect the

PPG readings while the user/attacker gives the signature.

We assume that they are trustworthy.

• Server & Links: The PPG sensor data from the smart

device is sent to the server for data processing and

verification. We assume that the server itself and the

communication link between devices and the server are

all trustworthy.

• Attackers: An attacker tries to forge the signature of the

legitimate user to bypass the system to do fraudulent

activities. We assume that the attacker can come close

to the user and shoulder peek to observe the signature

and the way the user gives his signature.

To successfully validate the fine-grained signatures via the

captured PPG signals from a wrist-worn device, there are

primarily three challenges to be addressed.

(1) Coarse-grained wrist PPG signals: PPG signals are rel-

atively coarse-grained, noisier, and interfere with other signals

more than ECG signals [10]. And wrist-worn PPG techniques

are even more coarse-grained. The critical landmarks are more

detectable in the fingertip region-based PPG signals than in the

wrist region ones. This means methods applicable to fingertip

PPG will not apply to the wrist PPG. In addition, the signal

is generally contaminated with noises due to subtle hardware

capture issues. To tackle this challenge, we carefully design

our noise filtering to extract critical landmarks (Section III-B)

and propose new feature extraction to extract discriminating

features (Section III-C) for fine-grained authentication.

(2) Same user having different PPG readings: This is also

one of the major challenges in existing PPG-based authenti-

cation systems [9], [10]. PPG signal contains the pulse signal

along with the signature signal from the user. However, the

PPG readings are different even for the same user (Fig. 2(a)),

as the pulse signal may vary due to the effect of pressure and

emotions of the user. Therefore, it is challenging to use the

PPG signals for signature authentication directly. To address

this, we extract the signature portion signal from the whole

signal by a new segmentation method (Section III-B) so that

the effect of pressure and emotion is minimized.

(3) Effect of the placement of the PPG sensor: The place-

ment of the PPG sensor can affect the performance since PPG

readings vary at different locations. As the PPG sensor is

generally used for measuring heart rate, blood pressure, and

pulse oximetry, existing applications concentrate on the pulse

signal measurement from the radial artery. Another location

for the placement, the most common one for the existing

smartwatches/fitness trackers, is the posterior wrist-side. In

our work, we focus on the minute movements of fingers along

with the hand itself while writing the signature. Therefore,

we have built our own wrist-worn wearable device in which

the PPG sensor is not attached to the Velcro band, and we

could test different positions. Via experiments, we find out that

if the sensor is placed around the median antebrachial vein,

the readings would represent the significant motion artifacts

occurring due to the signature writing. Though this position

is not in line with most people’s wearing habits, it is feasible

because the user will just have to rotate the wearable device

while writing the signature. Also, it is assumed that the user

will be wearing the hand-worn device on their dominant hand

which would be used to perform the handwritten signatures.

See Fig. 2(b) for these three locations. The details of the

impact of the sensor placement are discussed in Section IV-B.

III. SIGNATURE AUTHENTICATION WITH PPG SENSOR

A. Overall Design

As shown in Fig. 3, PPGSign consists of four parts: Data

Collection, Data Processing and Segmentation, Feature Char-

acterization, and Classification. In the data collection module,

the wrist-worn wearable device with a PPG sensor is used to

collect the PPG data during the signature written on a sheet

of paper. In the data processing and segmentation module,

there are three steps of data processing: noise filter, signal

normalization, and signature segmentation. The PPG signals

first pass noise filters and are normalized, then the signature
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Fig. 3. System architecture of PPGSign.

part of signals are segmented from the whole signals to remove

the pulse part. The feature characterization module includes

feature extraction, relevant features, and feature matrix. This

module mainly deals with the extraction of relevant intrinsic

characteristics of the input signal data that can discriminate

each user from another. Finally, the classification module

performs the authentication with a trained classifier. The

classification model is trained on the whole dataset of a user

in order to classify a new incoming signal into any of the two

categories: legitimate user or attacker.

During training phase, each new user provides some sample

signatures via a wrist-worn wearable device. The collected

PPG signal is then sent to the server-end and goes through

four parts of PPGSign to train a model for each user. During

authentication phase, the user trying to gain access would

provide the signature data, which is sent to the server-end for

the same procedures. The classifier compare with the stored

pre-trained model and make its authentication decision.

B. Data Processing and Segmentation

We now introduce the details of data processing and seg-

mentation module, which includes noise filtering, data normal-

ization and signature segmentation, as illustrated in Fig. 3.

1) Noise Filtering: Due to the user’s behavioral changes

and surrounding environmental variations, there are noises in

the raw PPG data collected. In addition, there are baseline

drifts and high-frequency interference in the PPG readings [10]

due to hardware imperfections. Human heart rate is generally

around 50-100 beats per minute [9], i.e., its frequency is rang-

ing from 0.8 to 1.7Hz. A naive way is applying a high band-

pass filter or Butterworth filter with a high cut-off frequency at

2Hz. However, the signature portion caused by the signature

might have some elements with a low frequency that will

get filtered by this method. Therefore, instead, we apply a

Savitzky-Golay (S-G) filter [11] to smooth the signal. S-G

filter is a type of low-pass filter, which is a smoothing method

based on local least-squares polynomial approximation.

2) Data Normalization: The PPG reading is generally rang-

ing from 400 to 750, and different users have a different variety

of data within the range. Before the PPG data is processed for

feature characterization, we will normalize it within a range

Algorithm 1 Skewness-DTW Method

1: Initial skewList; windowSize = 100; pulseSize = 80
2: for i = 0 → (length of S(n)− windowSize) do

3: value = SKEWNESS(S[i : (i+ windowSize)])
4: Append value to skewList

5: startPoint = Index Min(skewList)
6: Initial scoreList; pulseProfile = S[0 : pulseSize]
7: for i = startPoint → (|S(n)| − pulseSize) do

8: dataCompare = S[i : (i+ pulseSize)]
9: score = DTW (pulseProfile, dataCompare)

10: Append score to scoreList

11: endPoint = Index Min(scoreList)
12: return startPoint, endPoint

Algorithm 2 DP / Binary Method

1: Assign l1 / normal to Cost Function

2: Fitting the signal based on the Cost Function

3: bkps = DP PREDICT () / Binary PREDICT ()
4: startPoint = bkps[0]
5: endPoint = bkps[−2]
6: return startPoint, endPoint

of 0 to 1. Doing so can make the features more consistent and

help the convergence during the training phase.

3) Signature Segmentation: In this step, the processed data

S(n) (still a mixed signal of the user’s pulse profile and

signature motion) is segmented so that the signature portion is

obtained as an output. We explore 3 segmentation algorithms.

Algorithm 1 shows the Skewness-DTW method. It first finds

out the start index startPoint of the signature portion based

on skewness values (calculated by function SKEWNESS())
of the signal with a fixed window size windowSize. The index

of the minimum value of skewness gives us the start point of

the signature portion. To find out the end index endPoint of

the signature portion, our algorithm uses the Dynamic Time

Warping (DTW) technique similar to [12]. In the beginning,

it requires a pulse profile pulseProfile of the user, which

is obtained from the first few seconds of the signal where

the user did not start writing his signature instead keeps his

hand/wrist static. A sliding window-based approach is taken

where the window size is considered the average size of a

single pulse of the user. Each window of the signal after

the starting point obtained in the previous step is compared

with the pulse profile of the user based on the DTW method

(function DTW ()), and a score is generated, which indicates

the similarity between them. Finally, the endpoint is detected

based on the minimum value of the DTW scores. Fig. 4(a)

shows an example of the output, which marks both the start

and end index of the signature portion.

The other two segmentation methods (based on dynamic

programming (DP) and binary search (Binary)) are offline

change point detection methods inspired by [13]. Algorithm 2

shows both algorithms (red for DP and blue for Binary). In DP,

the costs of all the sub-sequences of the signal are computed
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Fig. 4. Examples of different segmentation of signature signal: (a) Skewness-DTW method, (b) dynamic programming, (c) binary segmentation.

at first, and then the minimum of the sum of the costs is

calculated. In this process, the number of change points to

detect has to be predefined. Via experiments, we let the number

of change points be 3, and the first/last change point is the

start/end point of the signature signal. l1 is a least absolute

deviation-based cost function, which is passed as an argument

to the cost function model. DP PREDICT () predicts the

predefined number of breakpoints of the given signal after

fitting the signal based on the cost function. Binary is a greedy

sequential algorithm that searches for the point for which

the sum of the costs gets lowered. After the first change

point is detected, the signal is split into two parts on that

point. The algorithm is repeated on the sub-signals until the

stopping condition is satisfied. normal is a Gaussian Process

Change-based cost function. Binary PREDICT () predicts

the predefined number of breakpoints of the given signal after

fitting the signal based on the cost function. This algorithm

works without the predefined number of change points, but we

use the same number of three change points. Fig. 4(b) and 4(c)

show examples of the outputs of these two algorithms.

C. Feature Characterization

Next, the segmented signature portion is passed on to the

feature characterization module, which has 3 following steps.

1) Feature Extraction: The PPG features that we focus on

are the time-domain features. We use a time-series feature

extraction tool tsfresh, a python package to calculate time

series characteristics or features automatically. With about

63 characterization methods, tsfresh by default can generate

more than 700 time-series features in an accelerated way. In

PPGSign, from each data frame from the clean and segmented

signature data, we use tsfresh to extract 787 time-domain

features, such as the absolute energy, descriptive statistics on

the auto-correlation, and binned entropy of the power spectral

density of the time series.

2) Relevant Features: Next, we also perform feature selec-

tion to select relevant features for the time-series classification.

It filters the important features for the machine learning model

beforehand, which helps to train the model well as there are

fewer irrelevant features. Each feature vector generated in the

previous step is individually tested to predict the labels in

regards to their significance. These tests give a score vector

for each feature vector, and these score vectors are evaluated

on the basis of the Benjamini-Yekutieli procedure to decide

which features to be selected [14]. Out of the generated 787
features, we select 8 features primarily as the relevant features

by using tsfresh. The selected ones are shown in Table I.

3) Feature Matrix: After collecting m calibrating sample

signals from a user, the relevant features, say r features, are

generated for each sample. Each feature value might have

TABLE I
LIST OF RELEVANT FEATURES USED BY PPGSIGN.

Features Description

count below mean(x) # of values lower than the mean of x.

number peaks(x,n) # of peaks of at least support n in x.

range cnt(x,min,max) # of values within [min, max).

fft coefficient(x,par) fourier coefficients from FFT.

number cwt peaks(x,n) different peaks in x.

abs sum of changes(x)
sum over the absolute value of con-

secutive changes in x.

agg linear trend(x,par)
linear least-squares (LLS) regression

for values aggregated over chunks.

linear trend(x,par) LLS regression for values in x.

a different range, thus feature scaling is done via Ynew =
Y− mean

standard deviation
, where Y is the current feature value of

the sample, and the new feature value Ynew is calculated

using the mean and standard deviation of all samples. Now

we have a 2D matrix of the dimension m × r where each

row represents the signature sample data, and each column

represents a selected relevant feature. This matrix is used for

the training of the classification model of this user.

D. Classification

For classification, we use the feature matrix to train the

classification model for each user. We use the following differ-

ent standard classifiers: Random Forest (RF), Support Vector

Machine (RBF Kernel), Gradient Boosting (GB), k-nearest

neighbor (kNN), Multilayer Perceptron (MLP), Feed-Forward

Neural Network (NN), and OnevsRest (OvR). These trained

classifiers can determine whether the new input signature PPG

data belongs to a legitimate user or not.

IV. IMPLEMENTATION AND EVALUATION

A. Prototype and Data Collection

Our prototype of PPGSign system includes two hardware

parts: PPGSign Band and Server. Although the commercially

available smartwatches and fitness trackers use PPG sensors

to measure the heartbeat/pulse, they do not provide access to

the raw PPG data. Thus, we build our own low-cost proof-

of-concept PPG-band, PPGSign Band, as shown in Fig. 5(a),

from the commercially off-the-shelf products. This band aims

to imitate wrist-worn wearable devices to validate the feasi-

bility of PPGSign. It consists of a velcro wristband, a PPG

sensor by World Famous Electronics with a green LED (as

the green LED performs the best), a USB cable (to connect

the micro-controller to the server), an Arduino UNO micro-

controller, and a slide switch to start and stop collecting data.

The PPG sensor is strapped to the Velcro band so that it
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remains facing towards the wrist when the Velcro band is

worn. A Dell Inspiron 15 laptop is used as the server which

is connected to the Arduino with USB cable.

All software modules of PPGSign are implemented in the

server using Python 3.8.3. The library package ruptures [13]

is used for implementation of Algorithm 2. We also use the

tsfresh tool [15] for feature extraction, and the python package

scikit-learn [16] for building the classifiers.

To validate the feasibility of PPGSign, we use the developed

PPGSign Band to collect the user’s raw PPG data while writing

the signature. The user sits on a chair and rests his hand on a

piece of paper on which he/she will provide the signature with

a pen. The PPGSign band is wrapped around the wrist with

the PPG sensor facing towards the Median Antebrachial vein.

Fig. 5(b) shows the data collection setup. The PPG data is

sampled at a rate of 97.5 Hz from the sensor via the Arduino

micro-controller when the side switch is on.

Because of the logistic limitations being created due to the

COVID-19 pandemic situation, 5 healthy volunteers partici-

pated in the experiment. Participants take part in 6 sessions of

signature writing. During each session, the participants provide

20 valid signatures of themselves, and 10 random forgeries

and 10 skilled forgeries against each of the other four users.

We adopt the same definition of random and skilled forgeries

from [5]. In random forgeries, the attacker does not know

the legitimate user’s signature, while in skilled forgeries the

attacker trains on the claimed user’s signature. Totally, we

have collected 3, 000 samples of signatures. As the COVID-

19 situation is relaxing now, we plan to collect more data to

expand our findings further.

B. Evaluation

We have conducted a performance evaluation on our current

PPGSign system. For the evaluation, we have tested the data

collected via PPGSign Band on multiple classifiers with the

different splitting of training and test data. User-specific model

training was adopted in our system, where a model is trained

for each users. Our evaluation mainly focuses on random

forgery and skilled forgery attacks on the legitimate user

from others users. Besides that, we also test a special case

of attacks where the legitimate user fake his “signature”. We

perform tests on three signature segmentation algorithms from

Section III-B and all classifiers mentioned in Section III-D. For

splitting training and test data, we use a different portion of

samples as the training data, from 20% up to 80%.

Three main metrics are used: (1) Precision, the ratio of cor-

rectly predicted positive values to the total predicted positive

values, i.e., Precision = TP

TP+FP
; (2) Recall, the ratio of cor-

rectly predicted positives values to the actual positive values,

i.e., Recall = TP

TP+FN
; (3) F1 score: F1 score is the ratio of

the positive and negative class, i.e., F1 = 2×Precision×Recall

(Precision+Recall) .

Here, TP represents the number of all True Positive cases,

i.e. legitimate users are recognized; FP represents the number

of False Positive cases, i.e. our system approves illegitimate

users; and FN represents the number of False Negative, i.e.,

our system denies legitimate users. Obviously, we prefer high

precision, recall, and F1 score.
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Fig. 5. PPGSign Prototype: (a) hardware components of PPGSign Band; (b)
data collection using the PPGSign.

Next, we report the detailed experimental results based on

the impacts of different factors, such as types of segmentation

methods, classifiers, training sizes, placement of the sensor,

attack from same user, and different surfaces. All the results

are based on the random and skilled forgery attacks except

“attack from same user”.

Impact of Segmentation Methods: In Section III-B, we

introduced three segmentation algorithms (Algorithms 1/2).

Fig. 6(a) shows the average performance of PPGSign with all

the classifiers when the dataset was split into 60% training

and 40% testing. Among the three segmentation methods,

Skewness-DTW and DP both performed well. In the rest

evaluations, we only report the results where the Skewness-

DTW method is used due to space limitations.

Impact of Classifiers: We compare 7 commonly used clas-

sifiers as listed in Section III-D. The classifiers are considered

under the Skewness-DTW segmentation method and with a

training size of 80%. The F1 scores for each classifier are

shown in Fig. 6(b). Feed-Forward Neural Network performs

the best with the highest F1-score of 98%, while the scores

of RF/GB/OvR are also within a close range.

Impact of Training Sizes: We then choose different per-

centages of data to use as the training data. Fig. 6(c) shows the

average performance of Skewness-DTW segmentation method

and all classifiers when training data size is from 20% to 80%.

Overall, when the size of the training dataset is increased,

the average F1-score also increases from 86% to 94%. This

basically shows that our system can take just a few training

data to achieve reasonable accuracy.

Impact of Placement of Sensor: As mentioned in Sec-

tion II, the placement of the sensor within the wrist area is

critical. We test three different sensor placements shown in

Fig. 2. Fig. 7 presents an example of the comparison of the

signature portion signal obtained from different placements.

Even though the same user writes the same signature, the

signature portion obtained from different placement is quite

different. It is hard to distinguish the signature portion from the

pulse signal in the case of radial artery or posterior wrist-side.

On the contrary, with the placement at median antebrachial

vein, the signature portion is distinguishable among the pulse

signals. Such placement is also feasible since the user can

rotate the smartwatch/tracker 180o so that its PPG sensor faces

the anterior side of the wrist when writing the signature.

Attack from Same User: This is a unique type of attack

where the user himself is trying to falsify signing the document

in the system by signing other than his signature. For example,

2022 IEEE Wireless Communications and Networking Conference (WCNC)

2725
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 30,2023 at 16:41:54 UTC from IEEE Xplore.  Restrictions apply. 



0

20

40

60

80

100

Skewness-DTW
(Algorithm 1)

Dynamic 
Programming 
(Alg. 2 Blue)

Binary 
Segmentation 
(Alg. 2 Red)

P
e
rc

e
n

ta
g

e
 %

Segmentation Methods

Precision Recall F1 Score

0

20

40

60

80

100

RF SVM-RBF GB kNN MLP NN OvR

P
e

rc
e

n
ta

g
e

 %

Classifiers

Precision Recall F1 Score

0

20

40

60

80

100

20% 40% 60% 80%

P
e

rc
e

n
ta

g
e

 %

Training data Size

Precision Recall F1 Score

(a) segmentation algorithms (b) classifiers (c) training size

Fig. 6. Performance of PPGSign for (a) different segmentation algorithms (average over all classifiers with 60% training data), (b) different classifiers
(Skewness-DTW segmentation with 80% training data), (c) training size is varying from 20%-80% (average over all classifiers).
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Fig. 7. Signature portion of PPG signals collected by PPG sensor at different locations: (a) median antebrachial vein, (b) radial artery, (c) posterior wrist-side.
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Fig. 8. Performance of PPGSign (a) under attacks from the same user, (b)
on three different surfaces - wood, metal, and plastic.

a user is legitimately ordered to sign a document which he/she

does not want to sign. So the user tries to forge his own

signature to escape from the situation. Our system shows a

promising performance to handle this type of attack. Here, for

each user’s dataset, only his invalid signatures are used as the

forged signatures. The result is shown in Fig. 8(a), with near

80% scores for 20% training data.

Impact of Surface: The matter of surface comes into

place when the user is signing on a document placed on a

certain surface. Though the signing happens on a piece of

paper, the surface the paper is placed on might be different

such as, wood, plastic, and metal. We have collected 30 new

samples for each type of surface. Fig. 8(b) shows the results

for different surfaces. Obviously, PPGSign’s performance is

almost the same in each of the scenarios. There is no impact

of surfaces on the system unless the surface is really uneven,

for which the finger and wrist movements are irregular.

V. CONCLUSION

In this paper, we have proposed PPGSign, a non-intrusive

and secure handwritten signature authentication system, which

leverages PPG sensors in the existing wearable devices. The

system exploits the unique blood flow volume changes in the

users’ hand movement to validate the handwritten signature.

We built a low-cost hardware prototype using COTS compo-

nents and evaluate its performance via experiments. The results

from our evaluation confirm the feasibility of the PPG-based

handwritten signature authentication. In the future, we will

test our system with more data/users, further investigate other

machine learning techniques, and explore real implementation

on the commercial smart band and develop a user-friendly

mobile app for real-world applications.
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