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Abstract—Mobile devices are promising to apply two-factor au-
thentication in order to improve system security and enhance user
privacy-preserving. Existing solutions usually have certain limits
of requiring some form of user effort, which might seriously affect
user experience and delay authentication time. In this paper,
we propose PPGPass, a novel mobile two-factor authentication
system, which leverages Photoplethysmography (PPG) sensors
in wrist-worn wearables to extract individual characteristics of
PPG signals. In order to realize both nonintrusive and secure,
we design a two-stage algorithm to separate clean heartbeat
signals from PPG signals contaminated by motion artifacts, which
allows verifying users without intentionally staying still during
the process of authentication. In addition, to deal with non-
cancelable issues when biometrics are compromised, we design
a repeatable and non-invertible method to generate cancelable
feature templates as alternative credentials, which enables to
defense against man-in-the-middle attacks and replay attacks. To
the best of our knowledge, PPGPass is the first nonintrusive and
secure mobile two-factor authentication based on PPG sensors
in wearables. We build a prototype of PPGPass and conduct
the system with comprehensive experiments involving multiple
participants. PPGPass can achieve an average F1 score of 95.3%,
which confirms its high effectiveness, security, and usability.

Index Terms—Mobile/wearable computing, two-factor authen-
tication, biometrics

I. INTRODUCTION

In recent years, two-factor authentication is widely deployed
by mobile devices to further improve system security and
enhance user privacy-preserving. It provides an additional line
of defense besides traditional commonly used authentication
approaches. For example, when a user wants to log in a
system, the user enters a password as usual. Synchronously, the
system will apply two-factor authentication to verify whether
the current user matches the pre-registered user. As mobile
devices have increasing relations with personally and finan-
cially sensitive information during people’s daily behaviors
like messaging, health caring, and payment, currently mobile
two-factor authentication is taking over more importance.

Given the need of mobile two-factor authentication,
many authentication techniques can be combined to provide
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promising solutions. Existing studies are broadly organized
into two categories: Knowledge-based and Biometrics-based.
Knowledge-based studies assume that a secret is shared be-
tween an owner and a device, which will be provided every
time when the device is used [1]. Most commonly used
passwords/PINs/patterns inputs are inherently vulnerable to
shoulder surfing attacks and smudge attacks [2], [3]. In terms
of two-factor authentication, existing systems mainly require
user extra involvement, such as Duo [4], Encap Security [5],
and Google 2-step verification [6]. They need users to type
in verification codes received by text messages or automated
phone calls from trusted phone numbers or trusted devices,
which seriously affect user experience and delay authenti-
cation time. Biometrics-based studies include physiological-
based and behavioral-based techniques. Physiological-based
techniques can reach high identification accuracy. However,
iris scan and voiceprint are inconvenient for users to au-
thenticate frequently and continuously. Fingerprints are prone
to be hacked in social media (e.g., stealing raw fingerprint
from a photograph) [7]. Face recognition, could be hacked
via images or videos of a user [8]. Furthermore, they are
suffering from replay attacks [9]. Behavioral-based techniques
also need user extra involvement, such as writing signatures
[10], speaking lips [11] and breathing gestures [12]. Screen
touch gestures can verify users nonintrusively [13], but it has
proven ineffective against advanced statistical attacks [14]. To
deal with such issues, Photoplethysmography (PPG) sensors
in the increasing popularity of wrist-worn wearables provide
a unique opportunity for realizing nonintrusive and secure
mobile two-factor authentication.

In this paper, we propose PPGPass, which takes the first
step to develop a nonintrusive and secure mobile two-factor
user authentication system using PPG sensors in wrist-worn
wearables. Fig. 1 shows the working paradigm of PPGPass.
Users register their features of PPG signals as cancelable
templates stored in the system database. When a user wants
to access, new incoming PPG signals will be collected and
the system verifies if the signals belong to the same person
from the stored templates. Thus identifying authorized users
and malicious attackers as the second layer of security.

Specifically, PPGPass focuses on three goals. 1) Nonintru-
sive authentication: PPG signals are easy to be disturbed by
hand motions. The user is usually required to remain stationary



while acquiring PPG data. This affects the user experience
and makes PPG-based authentication incompatible with com-
mon authentication approaches (e.g, signatures writing and
passwords/patterns inputs). We propose a two-stage Motion
Artifacts (MAs) removal algorithm to efficiently obtain clean
heartbeat signals, which enables to nonintrusively authenticate
users without user extra involvement. 2) High accuracy
authentication: We select 40 geometric features in the angle
domain from single and multiple cardiac cycles, which reflect
consistent and intrinsic individual characteristics to support
high accuracy authentication. 3) Secure authentication when
biometrics are compromised: We design a repeatable and
non-invertible method to generate cancelable feature templates
as alternative credentials, which provides solutions to defense
against man-in-the-middle (MITM) attacks and replay attacks.

The advantages of PPGPass are two-fold. First, it could be
easily applied to existing wrist-worn wearables without extra
hardware and cost, which enables every device to authenti-
cation users via PPG sensors. Second, it is compatible with
current commonly used techniques of mobile authentication,
especially offering simultaneous authentication with users’
signatures writing or passwords/PINs/patterns inputs. Our ex-
tensive evaluations with multiple participants demonstrate that
PPGPass is efficient and robust to verify users for mobile two-
factor authentication.

The main contributions are listed in the following:

• We propose a novel mobile two-factor authentication
system leveraging PPG sensors in wrist-worn wearables.
To the best of our knowledge, PPGPass is the first work
using PPG sensors to enable nonintrusive and secure user
authentication in which users need no extra involvement
and cancelable feature templates can be generated as new
credentials when biometrics are compromised.

• We design a two-stage MAs removal algorithm to pre-
cisely separate clean heartbeat signals from original
PPG signals with intensive noise, which enables the
simultaneous verification of users with commonly used
authentication approaches (e.g., signatures writing, pass-
words/PIN/patterns inputs), rather than requiring users to
stay still.

• We explore geometric features in the angle domain from
single cardiac cycle and multiple cardiac cycles, and
design a repeatable and non-invertible transform method
to generate cancelable feature templates for classification,
which support highly secure authentication and allow
users to re-register alternative credentials against MITM
attacks and replay attacks.

• We conduct extensive experiments with multiple partici-
pants using our prototype. The results show that PPGPass
can achieve an average F1 score of 95.3%, which con-
firms its efficiency and robustness.

The rest of this paper is organized as follows. Section II
surveys related work. Section III introduces PPG sensors, de-
sign challenges, overview, and workflow. Section IV presents
details of data preprocessing. Section V describes geometric
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Fig. 1. Working paradigm of PPGPass. A nonintrusive and secure mobile
two-factor authentication system using PPG signals via wrist-worn wearables.

feature extraction and classification. Section VI gives how to
re-register new credentials when biometrics are compromised.
Section VII shows evaluation results. Finally, Section VIII
concludes the paper and discusses future work.

II. RELATED WORK

Heart-based Authentication: Electrocardiogram (ECG)
has a long history in biometric authentication. For example,
ECG features are extracted by Welch spectral analysis and
principal component analysis, and then a k-nearest neighbors
method is applied to verify users [15]. Cardiac Scan [16] uses
geometric and nonvolitional features of cardiac motion for
continuous authentication. It uses a DC-coupled continuous-
wave radar to collect heartbeat information for identity classi-
fication. In terms of PPG signals, Fourier series analysis and
semi-discrete decomposition methods are applied to extract
discriminable features [17]. CardioCam [18] collects pulse
signals at fingertips to extract unique cardiac biometrics and
achieve effective and reliable user verification. However, these
methods require users to keep still during authentication,
which fails in the moving hand scenarios. Zhao et.al [19] pro-
pose a PPG-based authentication system utilizes the statistical
differences to detect MAs and reduce MAs by using a special
moving average filter. In addition, independent component
analysis, singular value decomposition, and adaptive filters
have provided the opportunity to reduce MAs while preserving
the morphological features of the original PPG [20]–[22].
However, these methods can only work well for only a limited
range of artifacts. They cannot be applied directly with users’
signatures writing or passwords/PINs/patterns inputs to realize
simultaneous two-factor authentication.

Cancelable Authentication: To deal with noncancelable
issues when biometrics are compromised, the direct way is
to encrypt data at local devices and decrypt data at the system
server. However, this creates a possible attack point to get ac-
cess to the decrypted templates [23]. Brain Password [24] uses
head-mounted devices to capture event-related brainwaves
under visual stimuli and generates cancelable brainwaves by
replacing different visual stimuli. For iris, fingerprint, and
face-based authentication, many methods have been proposed
to transform data in the signal domain or the frequency do-
main, which aim to morph original biometric templates [25]–
[27]. Our work focuses on designing a PPG-based cancelable
method for mobile two-factor authentication systems.

Mobile Two-factor Authentication: Bluetooth-based ap-
proaches execute cryptographic challenge-response protocols



SF EF

SP

DN

DP

Time (s)
0                  1                 2                  3                 4                     

P
P

G
 S

ig
n

a
ls

Cardiac Cycle Cardiac Cycle Cardiac Cycle 

5                   

Fig. 2. Fiducial points in PPG signals.

over a Bluetooth channel between an enrolled phone and a
login device [28], [29]. While they may not easy to be compat-
ible with standard web browsers. Proximity-Proof [30] verifies
users by automatically transmitting a two-factor authentication
response via inaudible OFDM-modulated acoustic signals to
the system. Other RF signals, such as Wi-Fi [31], [32], are
also leveraged to recognize and verify users. Acoustic sensing
has been widely applied in many mobile applications(e.g.,
relative positioning [33], [34], driving motion detection [35]).
In addition, EchoPrint [36] focuses on leveraging facial fea-
tures obtained from both acoustic signals and vision for
authentication. However, such methods might fail by ambient
disturbing noise or intrusive signals.

III. PRELIMINARIES

A. PPG Sensor

PPG signals reflect characteristics of human heartbeats,
which can be easily obtained via PPG sensors in most
commodity wrist-worn wearables. Specifically, a typical PPG
sensor employs green, red and infrared light sources and
photodiode chips that are highly sensitive to light changes.

The basic principle of PPG sensors is to detect blood
volume by measuring changes in light absorption. Cardiac
motions contain successive human heart relaxation (diastole)
and contraction (systole). As shown in Fig. 2, during one
cardiac cycle, atria relax to fill with 70% blood of the total
volume from atria through open mitral valve [16], which
results in a sharp increase in PPG signals because blood
absorbs more light than surrounding tissue [37]. The start of
atria relaxation is the point of starting foot (SF) in PPG signals.
Then, ventricles start to contract and pump blood, which is
corresponding to a systolic peak (SP). Atria continue to relax
and fill the remaining 20% blood (ventricles, at least, free up
10% of the volume for the contraction [16]), which results in a
slower increase in PPG signals, then ventricles contract again.
This process is corresponding to points from dicrotic notch
(DN) to diastolic peak (DP) in PPG signals. To denote ending
foot (EF), we set SF in the next cardiac cycle as the EF in the
current cycle. Such five points in one cardiac cycle are denoted
as fiducial points in PPG signals and play an important role
in user authentication.

B. Challenges

In order to realize a nonintrusive and secure mobile two-
factor user authentication using PPG sensors in wrist-worn

wearables, the following challenges need to be addressed.
The first challenge is to separate clean heartbeats from

PPG signals contaminated by MAs. MAs are caused by
irregular distance changes between PPG sensors and wrist.
A slight movement will lead to inaccurate heartbeat signals.
Such noise has overlapping frequency with heartbeats com-
ponent and especially exists in a mobile two-factor authen-
tication system along with users’ signatures writing or pass-
words/PINs/patterns inputs. The removal of these continuous
and intense MAs remains a challenge that needs to be further
studied. In this work, we propose a two-stage MAs removal
algorithm to precisely separate clean heartbeat signals.

The second challenge is to characterize intrinsic and
consistent features from PPG signals. In order to realize
a highly secure authentication system, what kinds of features
to extract is critical. Commonly used heartbeat features, such
as HRV, are strongly influenced by specific states (e.g., emo-
tions) [38]. Thus, they are not sufficient for high accuracy
of authentication, especially in the presence of MAs. In this
work, we extract a set of geometric features based on fiducial
points from the angle domain that reflects the consistent
characteristics of individual heartbeats.

The third challenge is to generate alternative creden-
tials when biometrics are compromised. Cardiac biometric
information is permanently associated with a user, which leads
to an issue that when compromised it cannot be revoked or
replaced. Moreover, if the biometrics are compromised in one
application, it can be used to compromise other applications
that apply the same biometrics [23]. In this work, we design
a repeatable and non-invertible transform method to generate
cancelable feature templates, which allows users to re-register
alternative credentials when biometrics are compromised.
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Fig. 3. Overview of PPGPass.

C. Overview & Workflow

The overview of PPGPass is shown in Fig. 3, which
consists of three parts: PPG Signal Preprocessing, Individual
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Fig. 4. Workflow of PPGPass.

Feature Characterizing, and Cancelable Feature Generating.
PPG signals are continuously acquired via wrist-worn devices.
In PPG Signal Preprocessing, firstly the original signals go
through a bandpass filter. Secondly, the signals are further
cleaned by a two-stage MAs removal algorithm (including
signal separation and adaptive filtering), which results in noise-
free heartbeat signals. In Individual Feature Characterizing,
firstly PPGPass segments the obtained clean heartbeat signals
by cardiac cycles. Then, in order to reduce the effect of the
dynamic nature of biometrics (presenting nonstationary over
time), PPGPass reshapes signals from the time domain to the
angle domain and extracts critical and consistent geometric
features from both single and multiple cardiac cycles. In Can-
celable Feature Generating, PPGPass transforms the extracted
features to generate cancelable feature templates and shuffles
the features, which can be used for re-registering as alternative
credentials. Lastly, PPGPass uses a random forest classifier to
efficiently identify users and attackers.

As shown in Fig. 4, the workflow of PPGPass mainly
includes two phases: User Enrollment Phase and User Authen-
tication Phase. In User Enrollment Phase, PPGPass acquires
PPG signals from every new user via wrist-worn wearables
and the signals are processed by PPG Signal Preprocessing,
Individual Feature Characterizing, and Cancelable Feature
Generating. Note that, this phase is conducted on personal
wrist-worn wearables at user-end locally. Then, the generated
cancelable feature templates are sent from the user-end to
the server-end. At the server-end, all the features are trained
by a random forest classifier and stored as user templates
in the system. This process is similar to open a new bank
account, where a user provides personal information (PPG
signals) for the bank to verify this user in the future. In
User Authentication Phase, like in the user enrollment phase,
PPGPass nonintrusively acquires PPG signals from a user
and processes the signals. Then, the server authenticates users
referring to the user templates by the random forest classifier.
When biometrics are compromised, PPGPass enables to gen-
erate cancelable feature templates as alternative credentials for
re-registering. This process is similar to reassign a new bank
account to the user whose account is compromised.

IV. PPG SIGNAL PREPROCESSING

A. Data Filtering

Synchronized with individual heartbeats, PPG signals can be
leveraged as intrinsic biometrics to authenticate users. How-
ever, users’ behaviors in other common authentication tech-
niques (e.g., writing signatures, passwords/PINs/patterns in-
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Fig. 5. PPG signals contaminated by MAs.

puts) and surrounding environmental changes cause inevitable
noise on PPG signals obtained via wrist-worn wearables. In
order to realize nonintrusive user authentication (not require
users to stay still during authentication), the acquisition of
clean PPG signals (heartbeat signals) is necessary.

Since the human heart rate is generally 50-100 beats per
minute, we apply a fourth-order Butterworth filter with a
bandwidth of 0.25-10Hz on original PPG signals. After this
process, noises caused by baseband drift (due to breathing) and
power-line are filtered, remaining heartbeat signals and MAs.
Because the frequency spectrum of MAs (0.1Hz or more) has
every chance of overlapping with that of heartbeat signals (0.5-
4Hz) [22], we continue to process PPG signals by the designed
algorithm in the following, which aims to further effectively
remove MAs in PPG signals.

B. Two-Stage MAs Removal Algorithm
Fig. 5 shows the interference of MAs on PPG signals

collected via a wrist-worn wearable. Before T1, a user remains
stationary and the signals are relatively periodic. Then, the
user is asked to write sentences about 10 seconds from T1 to
T2. We observe that the signals are dramatically changed in
random patterns.

Previous MAs removal methods can only be applied to
sudden, short-lived, and slight MAs. While, PPGPass aims
to provide a nonintrusive two-factor user authentication with
existing approaches, such as writing signatures or entering
passwords. Under such scenarios, PPG signals are mixed with
continuous and intense MAs, which cannot be directly used
to extract characteristics for user authentication.

To tackle this problem, inspired by semi-blind source sep-
aration (S-BSS) and adaptive filtering methods, we design a
two-stage MAs removal algorithm to separate clean heartbeat
signals from original PPG signals. In the first stage, we use a
modified S-BSS algorithm [21] to estimate heartbeat signals
and MAs. In the second stage, the estimated signals from the
first stage are invoked as reference signals, and then we apply
adaptive filtering to obtain clean heartbeat signals.

1) The First Stage: The basic task of S-BSS is estimating
parts of source signals that are linearly combined in obser-
vations. The process is formulated as extracting one or more
signals in time t, denoted as an n-dimensional vector S(t) =
[S1(t), ..., Sn(t)]T, from an observed m-dimensional signals
mixed vector X(t) = [X1(t), ..., Xm(t)]T by estimating an
unknown matrix W : S(t) = WTX(t).

Generally, S-BSS assumes that the dimension of S(t) is
the same as that of X(t): n = m. After data filtering, PPG



signals are two-dimensional composed of heartbeat signals
and MAs: S(t) = [Sheart(t), Sma(t)]T. In order to obtain
the same dimensional vector X(t), we collect both green
and infrared light data from a PPG sensor at the same time:
X(t) = [Xgreen(t), Xinfrared(t)]T.

Heartbeat signals are quasi-periodic and MAs signals are
non-periodic. So, given a heartbeat period τ , the following
conditions are satisfied in S(t):

E{Sheart(k)Sheart(k + τ)} > 0,

E {Sma(k)Sma(k + τ)} = 0,
(1)

where k is a time in t and E{∗} is an expectation operator.
Under the condition ‖W‖ = 1, the objective function in S-
BSS algorithm to solve W is:

maximize J(W ) = E {S(k)S(k + τ)}
= WE

{
X(k)X(k + τ)T

}
WT.

(2)

According to Equ. (1), for the desired source signals Sheart(t),
J(W ) will reach a high value, while other signals Sma(t) will
make J(W ) reach a low value. So we can estimate Sheart(t)
by maximizing J(W ). According to Equ. (2), the objective
function can be written as:

J(W ) =
1

2
J(W ) +

1

2
J(W )T

=
1

2
W (HX(τ) +HX(τ)T)WT,

(3)

where HX(τ) = E
{
X(k)X(k + τ)T

}
. Then, the maximiza-

tion of Equ. (2) is equivalent to finding the eigenvector
corresponding to the maximum eigenvalue (denoted as an
operator EIG(∗)) of HX(τ) +HX(τ)T:

W = EIG(HX(τ) +HX(τ)T). (4)

In practice, due to finite signal samples, cross-correlation
values in Equ. (1) of X(k) are calculated nonzero. Thus, we
replace to solve W by:

W = EIG(

P∑
i=1

(HX(iτ) +HX(iτ)T)), (5)

where P is a positive integer. The increase of P will make
the converged solution W closer to the ideal result and ensure
the successful extraction of the next stage.

2) The Second Stage: Heartbeat signals and MAs are
assumed to be linearly mixed in PPG signals in the first stage.
In fact, they are not ideally linear mixed. In order to further
remove MAs, we apply an adaptive filter to continue to clean
MAs in PPG signals.

We use the output data Sma(t) from the first stage as
reference signals, which is the key to achieve the effective
performance of adaptive filtering. Then, we apply adaptive
step-size least mean squares (AS-LMS) [22] adaptive filtering
to remove MAs. The effectiveness of the two-stage MAs
removal algorithm is investigated in Section VII-C, which lays
the foundation for PPGPass to authenticate users using PPG
sensors in wrist-worn wearables.

3) Signal Period Estimation: We estimate the period τ
of PPG signals by autocorrelation function, which provides
potential periods. Since the MA removal algorithm in the
first stage does not strictly require an optimal τ , we adopt
two shortest periods τ1 and τ2 as a set of candidate periods:
{iτ1, iτ2, i = 1, 2, 3, 4}. Because signals with lower skewness
and kurtosis are regarded with less noise [22], we choose the
best output data as clean heartbeat signals by comparing their
skewness and kurtosis.

V. INDIVIDUAL FEATURE CHARACTERIZING

A. Segmentation

After signal preprocessing, we obtain clean heartbeat signals
from the original PPG signals. Thus, heartbeat cycles can be
segmented by finding local minimums and maximums. We use
the first derivative and the second derivative to find the five
fiducial points (SF, SP, DN, DP, and EF) in each cycle.

B. Data Reshaping

In heart-based authentication systems with minimal security
requirements, instantaneous and average heart rate are used as
authentication features. However, two people with different
patterns of heartbeat signals can share the same heart rate. In
addition, heart rate can be artificially accelerated or decelerated
through exercise or meditation. Commonly used HRV features
are also used for authentication. However, they vary with
different emotions, postures, and signal acquisition locations.
In order to achieve high authentication accuracy, we extract
geometric features based on the shape of heartbeat signals.

Due to the dynamic nature of biometrics, signal lengths and
amplitudes between cycles present nonstationary over time. If
geometric features are extracted directly from the time domain,
such differences will influence the uniqueness of features. So,
we transform signals from the time domain (x, y) to angle
domain (ẋ, ẏ, ż) [39]:

ẋ = ωx− ρy,
ẏ = ωy + ρx,

ż = −
∑

i∈{sf,sp,dn,dp,ef}

ai∆θiexp

(
−∆θ2i

2b2i

)
− (z − z0),

(6)

where ω = 1 −
√
x2 + y2, ρ is the instantaneous heart rate.

∆θi = (θ − θi)mod 2π, where θi is the the fiducial point posi-
tion and the instantaneous angular position θ = tan−1 (y/x).
ai and bi are constant model parameters, z represents sig-
nals in the five fiducial points {SF, SP,DN,DP,EF}, and
{sf, sp, dn, dp, ef} are X-axis values of the five fiducial
points. In our case, the baseline component z0 can be ignored
because we only analyze one cycle at a time.

C. Feature Extraction

To capture the characteristics of individual heartbeat signals,
particularly as shown in Table. I, we explore 40 geometric
features based on the five fiducial points from single cardiac
cycle and multiple cardiac cycles.



TABLE I
GEOMETRIC FEATURES BASED ON FIDUCIAL POINTS

Category Feature Description
S(sp), S(dn), S(dp) Peak values of fiducial points.
L(sp, dp),

∑∑∑
L(dpi, dpi+1) Differences between X-axis of points.

Point-Based S(sp)−S(sf)
L(sf,sp)

Combination of the above two cases.
L(sf,sp)
L(sf,ef)

, L(sf,dn)
L(sf,ef)

, L(sf,dp)
L(sf,ef)

, L(dp,ef)
L(sf,dp)

,
∑∑∑ L(spi,dni)

L(spi,sfi+1)
Ratios of differences between X-axis of points.

|S(dn)− ysfdn|, |S(sf)− yspsf |,
∑∑∑ |S(sp)−yspsp|
|S(sf)−yspsp|

Points of tangency.
Area-Based A(sf, dn), A(sf, dp), A(dn, ef), A(dp, ef) Areas enclosed by X-axis and S between points.∑ef

dp |V |,
∑ef

sf |V |,
∑
|V >0|∑
|V <0| ,

∑ef
sp |V |∑ef
sp |S|

,
∑sp

sf
|V |∑ef

sf
|S|

Sums of S and V and their combinations.∑
|V >0|

C(V >0)
∗

∑
|V <0|

C(V <0)
Sums and counts of V .∑sp

sf
|V |

L(sf,sp)
,

∑ef
sp |V |

L(sp,ef)
,

∑sp
sf
|V |

L(sf,sp)
∗

∑ef
sp |V |

L(sp,ef)
,
∑ef

sp |V |∑ef
sf
|V |
∗ L(sp,ef)

L(sf,ef)
Combination of sums of V and L(∗).

Statistic-
∑∑∑sf

sp |S − ysfsp|,
∑∑∑sp

sf |S − ysfsp|,
∑∑∑sp

sf |S − ysfsp| Sum of differences between S and ysfsp.

Based
∑∑∑ef

sp |S − ysfsf |,
∑∑∑ef

dp |S − ysfsf |,
∑sp

sf
|S−ysfsf |∑ef

sp |S−ysfsf |
,

∑sp
sf
|S−ysfsf |∑ef

sf
|S−ysfsf |

Sum of differences between S and ysfsf .∑∑∑dp
sp |S − yspsp|,

∑∑∑dp
dn |S − yspsp|,

∑dn
sp |S−yspsp|∑sf
sp |S−yspsp|

,
∑dn

sp |S−yspsp|∑sf
sp |S−yspsp|

Sum of differences between S and yspsp.∑sp
sf
|S−ysfsf |∑sp

sp |S−yspsp|
Combination of the above two cases.

i and i+ 1 present the current cycle and the next cycle, respectively.
Multiple cycles features are in bold.

The features can be categorized into three types: Point-
Based, Area-Based, and Statistic-Based. We use S to represent
values of heartbeat signals, and use V to represent the first
derivative of S. Point-Based features contain peak values
and differences between X-axis of points such as S(sp),
L(sp, dp), and

∑
L(dpi, dpi+1), where L(∗) is an operator

calculating differences between X-axis of points. Additionally,
it also includes points of tangency, such as |S(dn) − ysfdn|,
|S(sf) − yspsf |, and

∑ |S(sp)−yspsp|
|S(sf)−yspsp| , where ysfdn is a line

connection SF and DN in one cycle, yspsf and yspsp are lines
connection SP in the current cycle and SF and SP respectively
in the next cycle. Area-Based features contain areas enclosed
by X-axis and S including A(sf, dn), A(sf, dp), A(dn, ef),
and A(dp, ef), where A(∗) is an operator calculating definite
integral for S. To obtain statistic features, we define C(∗) as a
counting operator. We also define ysfsp as the line connecting
SF and SP in one cycle. For multiple cycles, we define ysfsf
as the line connecting point SF in the current cycle and the
next cycle. Statistic-Based features contain sums and counts
of V , and sum differences between S and the defined lines.

D. Feature Training and Classification

1) Training: As PPGPass aims to allow users to re-register
new credentials when biometrics (PPG signals or feature
templates) are compromised, instead of the original extracted
geometric features, the input features for a random forest clas-
sifier are cancelable features, which will be described in detail
in Section VI. Therefore, when biometrics are compromised,
PPGPass enables to generate new sets of cancelable features,
which will be used as alternative credentials for users to re-
register in the system.

2) Classification: Initially, training templates are stored in
the system during the user enrollment phase. Then, when

an anonymous user wearing a wrist-worn wearable wants to
access the system via two-factor authentication with existing
approaches, such as writing signatures or entering passwords,
PPGPass launches PPG sensors of the wearable. The collected
PPG signals are processed through PPG signal preprocessing
(Section IV), individual feature characterizing (Section V),
and cancelable feature generating (Section VI), resulting can-
celable feature templates. During classification, the random
forest classifier is applied to verify the current template against
pre-stored templates and identify users.

VI. CANCELABLE FEATURE GENERATING

A. Security Issues

Biometrics, such as fingerprints, iris, face, and cardiac
motion, present unique individual characteristics, which have
been leveraged for user authentication with high accuracy.
However, the use of biometrics raises three main security
issues as follows.

Noncancelable: When biometrics are compromised, a
hacker could be verified successfully to systems by presenting
biometrics via MITM attacks or replay attacks. Unlike pass-
words that can be changed or reset, biometrics are permanently
associated with a user and cannot be revoked or replaced,
which results the biometric credentials divulged forever.

Application Cross-matching: Biometrics probably are
used to register in multiple applications. If biometrics are
compromised, a hacker could use the same method to get
access to all these applications.

Privacy Leakage: Biometrics themselves imply some kinds
of private information. For example, health conditions or
hereditary diseases might be inferred from cardiac motions.
When using biometrics as inputs for authentication, users have
a concern about invasion of privacy.



B. Feature Transformation
To solve the above issues, instead of using the extracted

geometric features (denoted as a vector v), we aim to fuse the
features by a transform function F(∗). Such a transforming
process has two design guidelines as follows.

Repeatable: For regular user enrollment and every authen-
tication phase, for one person the transform function fuses
the extracted features in the same fashion. Once features are
compromised, the transform function should generate a new
variant (a new set of fused features) that will be used for re-
registering a new credential. This process is similar to a bank
giving a new credit card to a user when the card is stolen. In
addition, the transform function should also generate different
sets of fused features for different applications. Therefore,
a repeatable transform function can solve the noncancelable
issue and render cross-matching impossible.

Non-invertible: Even if the transform function is compro-
mised, the original features or PPG signals (have been non-
invertible reshaped and presented as features) should not be
recovered. Therefore, a non-invertible transform function can
avoid privacy leakage (recovery of secret heartbeat signals).

The strategies of transform function F(∗) are in the follow-
ing, which are also demonstrated in Fig. 6.

1) The new fused features transformed by function F1 of
a feature vector v1 of one person should be distinct
from the previous fused features transformed by function
F′1, which is analogical to the case where using the
previously used passwords cannot be allowed to log in
after resetting new passwords:

Dist(F1(v1),F′1(v1)) ≥ λ, (7)

where Dist(∗) is an operator to define the similarity
between two feature vectors, and λ is a threshold.

2) To reduce false acceptance rate, distinguishable feature
vectors from different people (v1 and v2) should main-
tain distinct after being fused by their corresponding
transform functions (F1 and F2):

Dist(v1,v2) ≥ λ⇒ Dist(F1(v1),F2(v2)) ≥ λ. (8)

Based on the above discussion, we aim to find the maximal
dissimilarity between two fused feature vectors during fea-
ture transformation. We first design similarity measurement
Dist(∗). We denote two transformed feature vectors as v1 =
{p1, p2, ..., pi, ..., pN} and v2 = {q1, q2, ..., qj , ..., qN}, where
N is the number of extracted features. We normalize each
element and the normalized results are presented as v̄1 and
v̄2. Then, we construct a complete bipartite graph G = (V,E),
where V are divided into two disjoint sets corresponding to
the two vectors, respectively. The weight of each edge in E
is the Euclidean norm of its connecting vertexes, denoted as
d(p̄i, q̄j). Next, in order to measure the similarity between the
two vectors, we find a perfect matching of minimum cost in G
by the Hungarian method, in which the similarity measurement
Dist(∗) is the found minimum cost:

Dist(v1,v2) = minimize
∑

i,j∈1,2,...,N
d(p̄i, q̄j). (9)
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Fig. 6. Illustration of feature transformation strategies.

We use a transform function F to project a feature vector v
onto another space: F(v) = Hv, where H is a vector whose
entries are independent realizations of Gaussian variables. In
practice, we generate a large number of functions and then
find a function that has the maximum Dist(∗) between feature
vectors. Additionally, note that after transforming, in order to
avoid linkability between the previous features and current
features, we further shuffle the order of the features.

VII. EVALUATION

A. Experimental Setting

To validate the authentication performance of PPGPass,
because existing manufactures do not provide direct access to
raw PPG signals, we develop a proof-of-concept prototype in a
wrist-worn device using an off-the-shelf PPG sensor, which is
shown in Fig. 7. The prototype consists of an integrated PPG
sensor (with green and infrared light LEDs) and an adjustable
wristband. Note that the prototype is completely harmless to
the human body, and we use a sample rate at 400Hz.

B. Data Collection

PPG signals are collected from 7 healthy participants (4
males and 3 females), aged between 21 and 27. None of them
has a history of heart disease. Every participant sits comfort-
ably in a chair, wearing the prototype on the dominant hand to
conduct three conditions: signatures writing, passwords inputs,
and patterns inputs. Each participant performs 6 sessions. In
each session, PPG signals are collected repeatedly 30 times for
each condition. At the same time, an ECG sensor (AD8232)
is used to offer baselines. Totally, we collect 3780 samples (7
participants × 6 sessions × 30 repetitions × 3 conditions) for
analysis. The collected samples are manually labeled. During
authentication, each participant acts as an owner and the rest
act as attackers.

In order to obtain data under continuous contact between the
wrist and PPG sensor in the process, we generate binary data
from the collected PPG signals as an indication of error. When
signals present one or more error bits, such unreasonable data
will be discarded.

C. Efficiency of Two-Stage MAs Removal Algorithm

To evaluate the performance of the two-stage MAs removal
algorithm, we use peak-to-peak intervals (PPIs) to measure
accuracy in identifying the boundaries of each heartbeat cycle.
We compare the PPIs estimated by the algorithm to that
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Fig. 7. Prototype of a wrist-worn device with a PPG sensor.

obtained from the ECG signals. As shown in Fig. 8, the
coordinates of the scatter plot are the PPIs derived from ECG
and PPG signals, respectively. Points on the diagonal have
identical PPIs, and the distance to the diagonal is proportional
to the error. We observe that after removing MAs, all points
are clustered around the diagonal. Hence, the two-stage MAs
removal algorithm can effectively restore heartbeat signals and
provide a basis for PPGPass.
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Fig. 8. Scatter plot of PPI estimates.

D. Metrics

Recall & Precision: Recall is the ratio of correctly pre-
dicted positives values to the actual positive values. Precision
is the ratio of correctly predicted positive values to the total
predicted positive values.

F1 score: As the ratio of positive and negative class is
unbalanced, we use F1 score to measure the accuracy of
PPGPass, which is nonsensitive to class distribution: F1 =
2 ∗ precision ∗ recall/(precision+ recall).

E. Overall Performance

We first compare F1 score, recall, and precision with
different cardiac cycles in feature extraction under the three
conditions. Fig. 9 shows that F1 score of signatures writing
achieve 91.5%, 93.7%, 93.9%, 93.2%, 93.0%, and 92.3% for
1 cycle, 2 cycles, 4 cycles, 6 cycles, 8 cycles, and 10 cycles,
respectively. For conditions of passwords inputs and patters
inputs, F1 score achieve 95.5%, 97.2%, 97.6%, 97.6%, 98.2%,
97.0%, and 89.6%, 93.3%, 94.5%, 95.5%, 95.5%, 94.8% for
different cycles, respectively. The recall and precision of the
three conditions under different cycles have similar trends. The
results indicate that along with the increase of cycles in feature
extraction, the performance of PPGPass first improves and

then goes stable. When 4 cardiac cycles in feature extraction
is used, the overall accuracy of PPGPass achieves the best
performance. The average F1 score, recall, and precision for
4 cycles of the three conditions are all above 95%. The results
demonstrate that our system can accurately verify users.

F. Time Duration

To evaluate the time efficiency of PPGPass, we obtain its
response time, which usually is related to signal sensing time.
So, we restrict different sensing times in the experiment.
During authentication, we extract features from all adjacent 4
cardiac cycles and make a decision on each of these features.
When all of them are verified to the same user, this user is
approved. Fig. 10 shows that F1 score of 4s, 6s, 8s, 10s,
and 12s sensing times are 92.1%, 99.1%, 98.1%, 97.2%, and
87.4%, respectively. The recall and precision have similar
performance, whose corresponding values are 91.8%, 99.1%,
98.0%, 97.0%, 86.8%, and 92.4%, 99.1%, 98.2%, 97.4%,
87.9%, respectively. We observe that when sensing time is
4s, the system reaches accuracies above 90%, and the average
system response time is 1.8s. Normally, the three conditions
take time varying between 2-6s. Thus, the sensing time and
condition completion time can be approximately synchronized
achieving high accuracy. The results show that users can be
authenticated nonintrusively and efficiently.

G. Classifier Impact

We compare the performance of 4 commonly used classi-
fiers: Random Forest (RF), Naive Bayes (NB), Decision Trees
(DT), and Logistic Regression (LR). We apply 4 cycles in
feature extraction and 4s sensing time. F1 scores of different
testing set sizes are shown in Fig. 11. Along with the increas-
ing size of the testing set, F1 scores of all classifiers slightly
go descending. RF has the highest F1 score among all the
classifiers achieving 97.2%. The results show that RF has the
best performance and is adopted in PPGPass.

H. Long-Term Study

Long-term performance is a critical aspect of authentication
systems. Fig. 12 shows the F1 score of PPGPass among all
the participants over 50 days. After training, the data of the
testing set are collected on the same day, 10 days later, 20
days later, 30 days later, 40 days later, and 50 days later,
respectively. We observe that the corresponding F1 score
achieve 97.3%, 97.2%, 95.7%, 94.2%, 92.4%, and 90.1%,
respectively. The F1 score is declined by 7.4%. The recall and
precision have similar trends. They are declined by 8.7% and
6.0%, respectively. We conclude that the performance of the
system has no significant descending in the long-term study,
and PPGPass is robust against time change.

I. Cancelability

1) Revocability: First, we aim to prove features transformed
by a new function is distinguished from features transformed
by the previous function. Second, we aim to show that
applying features transformed by a new function can still
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Fig. 9. Overall performance of PPGPass under three conditions.
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TABLE II
PERFORMANCE OF REVOCABILITY

Features F1 Score Recall Precision
Previous Features 94.6% 94.7% 94.6%

New Features 96.1% 93.7% 98.6%

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5
Correlation Coefficient

50000

100000

150000

200000

F
re

qu
en

cy

Fig. 13. Dependence between previous and new transformed features.

achieve high accuracy. As shown in Table II, the average
F1 score, recall, and precision of the previous transformed
features under the three conditions are 94.6%, 94.7%, and
94.6%, respectively. When evaluating the performance of new
transformed features, treat the previous features as attackers.
The average F1 score, recall, and precision of the new trans-
formed features under the three conditions are 96.1%, 93.7%,
and 98.6%, respectively. The results demonstrate that the
process of generating cancelable features does not degrade the
efficiency of the system. In addition, PPGPass is shown to have
robustness against the attacks using the previous signals when
biometrics are compromised, which can defense against MITM
attacks and replay attacks and thus presents revocability.

2) Unlinkability: We use Pearson’s correlation coefficient
to evaluate dependence between the previous and new trans-
formed features (comparing each pair of normalized features
from the previous features and new features). As shown in
Fig. 13, the results center at zero, mainly ranging between
[−0.1, 0.1], which indicates that the previous features and new
features are highly independent.

VIII. CONCLUSION AND FUTURE WORK

We propose PPGPass, a novel nonintrusive and secure
mobile two-factor authentication system, which leverages PPG
sensors in wrist-worn devices. Specifically, it can remove MAs
in PPG signals, characterize individual heartbeat signals, and
generate cancelable feature templates when biometrics are
compromised. It is compatible with existing wearables and
other authentication techniques. We build a prototype of PPG-
Pass and evaluate its performance with multiple participants.
The results show that it can achieve high accuracy, which pro-
vides an additional line of defense. We also evaluate its long-
term performance and its cancelability against attacks, which
demonstrate the robustness and sustainability of PPGPass.

In future work, firstly, we are aware that PPG signals are
sensitive to acquisition locations and skin colors. So, we plan
to examine the impact of these factors of PPG sensors in wrist-
worn wearables. Secondly, to further evaluate the performance
of the proposed system, we plan to conduct experiments
with more participants under more intense motions (such
as continuous and intense on-screen keyboard typing) in a
longer time. Thirdly, we plan to test participants in different
states, such as different emotions, cardiac disease, and before
and after exercise. Overall, we would like to explore more
observations and solutions for PPGPass in our future work.
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