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Abstract—Recent literature advances motion sensors mounted
on smartphones and AR/VR headsets to speech eavesdropping
due to their sensitivity to subtle vibrations. The popularity of mo-
tion sensors in earphones has fueled a rise in their sampling rate,
which enables various enhanced features. This paper investigates
a new threat of eavesdropping via motion sensors of earphones
by developing EarSpy, which builds on our observation that the
earphone’s accelerometer can capture bone conduction vibrations
(BCVs) and ear canal dynamic motions (ECDMs) associated
with speaking; they enable EarSpy to derive unique information
about the wearer’s speech. Leveraging a study on the motion
sensor measurements captured from earphones, EarSpy gains
abilities to disentangle the wearer’s live speech from interference
caused by body motions and vibrations generated when the
earphone’s speaker plays audio. To enable user-independent
attacks, EarSpy involves novel efforts, including a trajectory
instability reduction method to calibrate the waveform of ECDMs
and a data augmentation method to enrich the diversity of
BCVs. Moreover, EarSpy explores effective representations from
BCVs and ECDMs, and develops a convolutional neural model
with Connectionist Temporal Classification (CTC) to realize
accurate speech recognition. Extensive experiments involving
14 participants demonstrate that EarSpy reaches a promising
recognition for the wearer’s speech.

I. INTRODUCTION

Ear-wear devices are becoming more pervasive and common
in our daily life, which provides unprecedented possibilities
for improving our lifestyle. However, according to a report
from [1], 50.2% of participants have experienced conversation
surveillance on their smart devices, and more are concerned
about losing conversation information on their personal de-
vices. In view of the potential risks, microphones are typically
protected by permission mechanisms in operating systems [2],
[3]. As motion sensors become increasingly critical in ear-
phones to deliver enhanced functions such as in-ear detection,
touch control, and virtual assistant activating, their sampling
rates have sharp increase to about 500-2,000 Hz [4], [5]. The
powerful sensing capability and unrestricted access have made
the motion sensors on earphones attractive targets for attackers.
In this paper, we raise a challenging question: can the motion
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Fig. 1. An illustration of EarSpy scheme.
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sensors embedded in earphones pick up the wearer’s speech
during everyday life?

Prior studies [6]-[9] have shown that smartphone motion
sensors (e.g., accelerometers and gyroscopes) are sensitive
enough to measure sound vibrations replayed by an exter-
nal loudspeaker placed on the same surface or the built-in
loudspeakers of the same smartphone. Besides, Vibphone [10]
shows the success of tracking speech-induced vibrations from
the cheek using smartphone’s motion sensor during phone
conversations. The recent attempt, Face-Mic [11], identifies
a new security vulnerability of inferring speech based on face
dynamics using the built-in motion sensor of AR/VR headsets.

While these prior works demonstrate the feasibility of using
motion sensors mounted on various devices to infer speech,
we find that they can not be applied to speech eavesdropping
via earphones for the following reasons: (i) Different from
the loudspeaker’s vibrations captured by smartphone motions
sensor, the wearer’s speech vibrations captured by earphone
motion sensors only contain a very low baseband of the voice
due to the significant decay effect as sounds propagate through
bone and tissue. Moreover, speech travels from throat through
face to the ear with complex rendering along multiple paths.
Thereby signals captured from the ear differ greatly from those
captured from the face. (ii) Existing approaches only handle
scenarios that involve a single sound source (either replayed by
the loudspeaker or generated by a live speaker). However, the
earphone eavesdropping scenarios usually involve the wearers’
speech and audio played by the earphone’s speaker, leaving
analysis of the wearer’s speech very difficult. (iii) Besides
analyzing the motion sensor data, existing works often require
other data such as labeled victim’s audio to achieve the de-
sired accuracy. However, such information is not available on



current earphones. There still lacks an effective and practical
solution for eavesdropping via motion sensors on earphones.

Fig. 1 shows the scheme of EarSpy, which is based on our
observations that (i) during speech production, vibrations from
the vocal cords propagate through the mandible and tissue
to the ear, affecting the earphones’ motion sensors, known
as Bone Conduction Vibrations (BCVs); (ii) the movements
of mouth cause dynamic motions of the ear canal, thereby
causing the earphones’ motion sensor response, known as
Ear Canal Dynamic Motions (ECDMs). The two types of ear
dynamics are highly related to the speech content and can be
decoded to infer the wearer’s speech.

EarSpy continuously records motion sensor data at a high
sampling rate to capture ear dynamics caused by speech. One
may be concerned about whether continuous monitoring of
the earphone’s motion sensor at a high sampling rate would
quickly drain the battery and alert the victim? We find that
motion sensors play an important role in today’s earphones and
have already been commonly monitored continuously at a high
sampling rate. For example, Apple describes in their patent [5]
that the accelerometers in their headsets work at a sampling
rate of 2,000-6,000 Hz to detect a user’s voice activity. This
has driven manufacturers to equip earphones with ultra-low
power chips that support hours of earphone use on a single
charge [12]. Thus, we believe EarSpy is not easily noticeable.

The novel yet plausible idea faces three major challenges: (i)
Besides the widely recognized interference of body movement,
motion sensors of earphones are particularly susceptible to
vibrations arising from earphone’s speaker playing audio [13],
which brings errors in speech recognition. To address this,
we design a pitch tracking-based earphone vibration interfer-
ence elimination method to disentangle the wearer’s speech
information. (ii) Speech-induced ear dynamics are sensitive to
individual differences, which hinders the system performance.
To overcome this, we study the characteristics of BCVs and
ECDMs, and make novel efforts including a data augmentation
method to generate BCV features with sufficient individual
variations and a Procrustes transformation-based method to
reduce instability for ECDM features. (iii) It is also very
challenging to devise an accurate model to infer speech based
on ear dynamics since their relationship with speech content
is unclear. EarSpy calls for a careful design to capture the
nuances between different speech contents and realize accurate
speech recognition. We design a deep learning model based
on Convolutional Neural Networks (CNN) and Connectionist
Temporal Classification (CTC), which enable accurate and
user-independent word-level speech recognition. Overall, the
contributions of this paper are summarized as follows:

1) We propose and implement EarSpy, which is the first
to reveal the security vulnerability of eavesdropping
wearer’s live speech using the zero-permission motion
sensors mounted on the earphones.

2) We propose several novel techniques to separate reli-
able ear dynamics from the complicated interference
and incorporates an instability reduction method and
a data augmentation method together to achieve user-
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Fig. 2. Speech production process.

independence. In addition, we design a CNN-CTC-based
deep learning architecture that effectively fuses the two
types of ear dynamics for accurate speech recognition.

3) We conduct extensive evaluations with 14 participants
under various situations, which demonstrate the effec-
tiveness of our proposed attack.

II. PRIMARIES AND OBSERVATIONS
A. Ear Dynamics Production

Fig. 2 shows the production of voice and the associated two
types of ear dynamics. The lungs push air through the vocal
cords, causing vocal cords to vibrate and produce a buzzing
sound. Meanwhile, the vocal tract resonator (i.e., mouth cavity,
tongue, nose, and lips) modify the buzzing sound and produce
the voice. The vocal cord vibrations are highly related to
the speech content and can propagate to the ears through
the mandible and tissue, enabling the earphone’s motion
sensor to capture BCVs. Besides, ECDMs are determined by
highly speech-dependent vocal tract resonator motions, which
furthering adding speech information to the earphone’s motion
sensor measurements. Therefore, the ear dynamics of BCVs
and ECDMs present rich speech information, motivating us to
exploit them to infer the earphone wearer’s speech.

B. Capturing Ear Dynamics Using Motion Sensors

1) BCVs: Herein we explore the opportunity of capturing
speech-related ear dynamics using earphone motion sensors.
We focus on using the accelerometer since it captures both
vibrations and the motion change rate; it has been identified
to be more sensitive to speech-induced vibrations than the
gyroscope [11]. We record acceleration from the earphones
while a volunteer speaks password. Meanwhile, we attach an
accelerometer to the volunteer’s throat to obtain the reference
signal of vocal cords vibrations. Particularly, to handle the
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acceleration difference caused by coordinate system variations,
we derive the vertical acceleration in the longitudinal axis of
the body using the quaternion-based method [14]. Fig. 3 shows
the spectrogram of both cases, respectively. We can observe
that the earphone’s accelerometer successfully captures the
vocal cord vibrations (i.e., BCVs), although the bones and
muscles filter out part of the high-frequency components.

2) ECDMs: Moreover, the spectrogram shows an interest-
ing response in low frequencies. To further study the low-
frequency response, we ask the volunteer to again perform
the mouth movement of speaking password, but without
pronouncing. Fig. 4 shows the vertical acceleration captured
from the ear and the corresponding frequency response. We
can observe components below 50 Hz still remains. Therefore,
we attribute such a low-frequency component to the motions of
the ear canal wall caused by mouth movement (i.e., ECDMs).
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(a) Vertical acceleration response. (b) Power spectral density.
Fig. 4. The vertical acceleration profile of mouth movements.

3) Interference: The accelerometers of earphones have
been criticized for being vulnerable to body motions [15].
We, following common sense, identify body motion as one of
the causes of interference. In addition, we investigate another
potential interference: since the speaker and the accelerometer
are in physical contact with the same board, vibration arising
from the earphone’s speaker playing audio inevitably affects
the acceleration measurements [8]. Specifically, we record
vertical accelerations using a pair of earphones when the
volunteer speaks password, while one earphone plays audio
(shown in Fig. 5(a)) and the other does not (shown in
Fig. 5(b)). We can observe that earphone playing audio indeed
introduces interference to the accelerometer measurements.
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(a) With music playing. (b) Without music playing.
Fig. 5. Examples of vertical acceleration with and without noise arising from
earphone speaker playing audio.

4) Observations: The study confirms that earphone’s mo-
tion sensor sure captures BCVs (influence frequencies above
50 Hz) and ECDMs (influence frequencies below 50 Hz).
Besides, we identify the interference in the accelerometer
measurements including body motions and earphone speaker
vibrations. According to previous work [15], [16], earphone
vibrations usually have frequencies above 50 Hz, which affect
BCVs; while body motions usually have frequencies below
10Hz, which distort ECDMs. Thus, we disentangle BCVs and
ECDMs respectively to infer the wearer’s speech.
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Fig. 6. The architecture of EarSpy.
C. Attack Model

Since access to the earphone’s motion sensors requires
zero permission, the malicious application can disguise itself
as any application and trick the victim into installing it
on their smartphones, utilizing which, the attacker gathers
the accelerometer measurements of earphones. We assume
that the malicious application has no access to any other
information (e.g., the victim’s earphone model and voice data).
An attack can be launched to separate the victim’s speech
from the noisy sensory readings and infer the speech content.
The attackers may steal important information, including: 1)
Private information, such as passwords to a bank account,
social security number, postcode, and address. Leakage of such
vital information can put the victim’s security and privacy at
high risk; 2) Personal preference. For example, some products
frequently mentioned by the victim may be what he/she wants
to buy, and advertisers can target display ads accordingly.

III. SYSTEM DESIGN
A. System Overview

We present the design of EarSpy, which utilizes the motion
sensors mounted on earphones to infer the wearer’s speech.
Fig. 6 shows the architecture of EarSpy. The malicious
application collects the accelerometer measurements of ear-
phones and checks for the wearer’s speech. During speech
periods, the accelerometer measurements are separated into
BCVs and ECDMs based on the frequency distribution. In
Profiling Ear Dynamics, EarSpy eliminates the interference
of earphone vibrations when playing audio and body motions
for BCVs and ECDMs, respectively. Then, EarSpy extracts
effective representations from BCVs and ECDMs, which cap-
ture unique speech information. After that, in Handling User
Dependence, EarSpy develops two novel algorithms to inhibit
representations’ sensitivity to individual differences, including
a trajectory difference reduction technique to calibrate the
ECDMs, and a novel data augmentation method to generate a
large amount of BCVs that include sufficient individual vari-
ations. Finally, in Inferring Wearer’s Speech, EarSpy designs
a CNN-CTC-based deep learning framework to parse BCVs
and ECDMs. With special construction and training, the deep
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Fig. 7. An example of speech detection.

learning model can infer the wearer’s speech without needing
to pre-acquiring the wearer’s labeled voice data.

B. Speech Detection

We propose a lightweight method to check the presence
of speech based on the fact that accelerometer measurements
of speech periods have high intensity, whereas non-speech
periods usually have low intensity. For speech segmentation,
the double-threshold scheme is widely applied [17], [18],
which respectively applies thresholds to short-time energy and
zero-crossing rate to detect the starting and ending points of
speech. Inspired by it, we use 50 Hz as the cut-off frequency
to separate the accelerometer measurements into a high-
frequency component and a low-frequency component, each
corresponding to the BCVs and the ECDMs. Then we calcu-
late the linear acceleration (LA) [19] of the two components
and determine the point at which both two LAs exceed their
threshold (empirically set to be 0.2 times the maximum value
of LA calculated from the prior 100 ms period) as the starting
point of speech. Besides, the point that LA amplitude of both
components is reduced below their thresholds and the recorded
speech exceeds 50 ms [20] is identified as the ending point.
As shown in Fig. 7, the proposed method is effective for
speech detection and robust to those body movements and
earphone speaker vibrations that do not overlap with speech,
as they usually affect only one of the two components without
allowing both components to exceed their thresholds.

C. Profiling Ear Dynamics

Our goal is to first extract ear dynamics from interference
caused by body motions and earphone vibrations when playing
audio, then parse the ear dynamics to infer the wearer’s speech.
The past few years have seen the success of effective body
motion noise elimination for ear-wear motion sensor measure-
ments, such as deep regression [11] and sensor fusion [21]. We
reduce the impact of body motion in ECDMs as suggested by
[11]. However, the vibrations generated when the earphone’s
speaker plays audio remains a new and less studied area, which
is identified as one of our major challenges. Therefore, we
design a novel scheme to eliminate the impact of earphone
vibrations when playing audio.

1) Earphone Vibration Interference Elimination: The pitch
continuity of speech has been witnessed for decades [22], sug-
gesting that a subject’s speech has a continuous pitch trajectory
over a short period. We are inspired to track the wearer’s
speech pitch trajectory thus separating the wearer’s speech
from interference caused by vibrations of earphone’s speaker.
The basic idea is to segment the contaminated signals into
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Fig. 8. Earphone vibration interference elimination pipeline.
time-frequency representations, group them by pitch tracking,
and recover the wearer’s speech, as shown in Fig. 8.

Decomposition: We first use a bank of gammatone fil-
ters [23] with overlapping passbands to extract sound infor-
mation similar to what a human would perceive. Specifically,
we use 64 filters, and their center frequencies are equally
distributed on the modified equivalent rectangular bandwidth
(ERB) scale [24] above 50 Hz. The modified ERB scale is
defined as ERB(f) = 24.7(4.37 x f 4+ 1), where f labels the
frequency. Then, we apply a 20ms sliding window with 10ms
overlap to analyze the signal. At window w of filter channel c,
the obtained signal is considered as a time-frequency element,
which is denoted as e .

Segregation: Then we quickly merge the elements into
segments of a single source based on temporal continuity and
cross-channel similarity. Specifically, we calculate temporal
continuity by autocorrelation [25], A. ., at zero lag. Elements
with A, ., > 0% will be segregated from those with A. ,, < 0%,
where 65 = 50 is approximate to the spontaneous firing rate of
the auditory nerve [26]. Besides, there is strong evidence that
the filter channels corresponding to the same sound component
exhibit high cross-channel correlation [27]. Therefore, we
calculate the cross-channel correlation between adjacent filter
channels to measure their similarity as follows:

ZT [Acyw (1)— Ac.,w] [Ac+1,w (1)— Ac+l,w]
\/ZT [Ac,w (T) *Zc,wP [Ac+1,w (7_) *Zc—&-l,wP

where A, represents the averaged autocorrelation. If the
neighboring elements e.,, and e.;1.,, have a cross-channel
correlation over 0.985 (chosen based on [20]), they are credible
to belong to the same sound source, therefore we merge them
into one segment. By iteratively merging the time-frequency
elements, we obtain several segments.

Pitch Tracking: The basic idea is to estimate the domi-
nant pitch of each segment and label it as wearer’s speech or
interference. Specifically, we determine the dominant pitch by
locating the maximum peak in the range of 80-250Hz from the
summary autocorrelation A, (1) = Y. Ac. (7). Afterward,
we calculate a global dominant pitch of the captured speech. If
more than half of the elements of a segment at a certain frame
match the dominant pitch, the segment is considered to belong
to the same source thereby labeled as a group. Otherwise, it is
labeled as another group. To avoid incorrect grouping and over
grouping, segments shorter than 50 ms are removed. Hence,
the segments of different frames are clustered into two groups.

Synthesization: Finally, the two groups of signals are
reconstructed by applying binary weights to each frame of the

Sc,w: ; (1)
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Fig. 9. An example of earphone vibration interference elimination (left ear)
for BCVs. The top panel shows the spectrogram, and the bottom panel shows
the acceleration response.

gammatone filterbank, then sum across all channels [28] to
generate two resynthesized signals, corresponding to wearer’s
BCVs and interference of speaker vibrations, respectively. To
distinguish between BCVs and interference, we process the
acceleration measurements from the left and right ears and
obtain four resynthesized signals (2 ears x 2 groups) in total.
Depending on the played audio, interference in the left and
right ears’ data will be approximately the same (e.g., mono
audio) or very different (e.g., stereo audio). Besides, BCVs
in the left and right ears’ data will hold slight differences
due to asymmetry of the human body [29]. Therefore, we
leverage this contrast to label the resynthesized signals as
wearer’s speech or interference by comparing cosine similarity
between resynthesized signals of the two ears. Fig. 9(a) shows
an example of accelerometer measurements involving the
wearer’s speech and audio interference, and Fig. 9(b) shows
the resynthesized speech and interference. Moreover, the eval-
uation presented in Section I'V-F1 validates the effectiveness
of the proposed method.

2) BCV Representation Extraction: High-pass filter used to
obtain BCVs renders the time-domain features not stable [11],
thereby we extract the spectrogram as the representation of
BCVs, which capture the fine-grained time-frequency differ-
ence between speech content. The BCVs representation is
then processed by a data augmentation-based deep learning
framework to enable user-independent speech eavesdropping.

3) Body Motion Interference Elimination: We build a deep
regression model to eliminate the impact of body motion
in ECDMs as suggested by [11]. Specifically, we record
accelerometer measurements when performing ECDMs and
representative body motions (e.g., walking), respectively. Then
we mix them to generate contaminated ECDMs as training
data. By chaining two fully-connected layers and a regression
layer, we can train a deep regression model to separate clean
ECDMs from body motion interference.

4) ECDM Representation Extraction: Although previous
works [11] show the success of profiling the ear-wear ac-
celerometer measurements using displacement trajectory, it
does not work in our case because analyzing a single point’s
position is insufficient to obtain a comprehensive understand-
ing of the mouth motion. Inspired by [30] that captures
ear canal wall motions using envelope of acoustic signals
measured from the ear, we extract the envelope of a total
of six acceleration axes collected from the two ears as the
representation of ECDMs.
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Fig. 10. An example of envelope instability reduction for ECDMs.
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D. Handling User Dependence

We find through repeated experiments that ECDM represen-
tations of different subjects exhibit differences in curve shape
and signal amplitude. Therefore, we incorporate a simple yet
effective scheme to calibrate the ECDM representations to
have similar curve shapes. Besides, BCV representations of
different subjects show obvious distinctions in both time and
frequency domains. We seek a data augmentation method and
a deep learning framework (introduced in Section III-E) to
achieve user-independent.

1) ECDMs Instability Reduction: We propose to reduce the
ECDMs envelope instability based on Procrustes transforma-
tion, which changes the size and position of the signal tra-
jectory but maintains the geometric characteristics. Procrustes
transformation has proven useful in figure alignment [31], but
to our knowledge has never been used in our scope.

Specifically, we first record the ECDMs from multiple
subjects and obtain the data envelope D, (t) over multiple
subjects as the baseline. Given the currently obtained envelope
D(t), the Procrustes transformation process involves rotation,
scaling, and translation, which can be expressed as:

D(t)=H-D(t)a + B, )

where H is the rotation matrix, « is the scaling coefficient, and
[ is the translation coefficient. The rotation matrix H is solved
by singular value decomposition for D(t) " Daye(t) = UXV T,
where U and V are orthogonal, and ¥ is diagonal. Then, «
and S can be solved by Minimal Mean Square Error (MMSE)
estimation [32]. Fig. 10 illustrates envelopes of original ECDM
envelopes and the calibrated results of four subjects, which
demonstrate the effectiveness of our proposed method.

2) BCVs Augmentation: It is very hard and entails sig-
nificant time/effort to collect a large amount of BCVs with
sufficient individual variations. With many open-source acous-
tic speech datasets but very limited BCVs, we innovatively
propose a data augmentation method that decomposes the air-
conduction speech audio A(t) of speaker A into sub-phoneme
units and matches that of BCV (denoted as V'(t)) of speaker
B then generate a new BCV signal that maintains the voice
characteristics of speaker A. Our strategy is shown in Fig. 11,
which consists of three steps:

Building Text-To-Vibration (TTV) and Text-To-Speech
(TTS) Models: We first build a TTV model for speaker B
and train a TTS model for speaker A. By doing this, we can
decompose the two speakers’ data into small units, and the
TTS units of speaker A can then be mapped to the closest



unit in TTV of speaker B to generate “BCVs” of speaker
A. Specifically, we apply a low-pass filter with 400 Hz cut-
off frequency to acoustic speech of speaker A since BCVs
barely have high-frequency components. Then, we extract
features including Mel frequency cepstral coefficients (MFCC)
and pitch as representations for each phoneme (unit). We
use Gaussian Mixture Model-Hidden Markov Model (GMM-
HMM) to contextually relevant phoneme combinations, map
the corresponding acoustic features, and build TTV and TTS.

Units Equalizing: To estimate the similarity between
units of TTS and those of TTV, we still need to minimize
the differences between A(t) and V(¢) by bilinear spectral
space warping. The bilinear function yields new units based
on units of TTS and TTV, meanwhile preserving speaker A’s
voice characteristics and avoiding errors in automatic format
extraction [33]. We define the following, which can provide
better analytical property and only requires one parameter ¢:

Vi)™t —e
1—eV(t)~!

We design a searching strategy to estimate €. By aligning
the power spectrogram of A(t) (denoted as P4(f)) and V (t)

(denoted as Py (f)), we can derive the Log Spectral Distance
(LSD) defined as follows:

o= |

We first determine g, the initial value of e, by minimizing
the overall mean LSD between P (f) and Py (f). Then we
alternately wrap Py (f) to be Py (f) and update P4 (f) to be
P4(f). Meanwhile, we search forward and backward around
€o and finally determine € by minimizing the LSD between
Pa(f) and Py (f).

Units Mapping: We construct a matrix to describe the
similarity between equalized units of TTS and TTV. Specif-
ically, we measure the similarity between speech units from
three aspects: the pitch distance d,, gain distance d,, and Line
Spectral Pairs (LSP) distance drsp, expressed as

¢e(t) = el < 1. 3)

Pa(f)
f)} dt. (4)

Y(Uw,um) = M(dp) + M(dg) + M(dvsp),
dp = [lg(pw) = lg(pm)|;
dg = |lg(gw) —19(gm)|, (5)
disp = \/% ZiLzl ©;(Ow,i — Om,i)?,
0 = 9w,i*}7w,i—1 + 9w,i+11*9w,i’

where uy, represents the wrapped speech unit of speaker
B and u,, represents the mapping candidate speech unit of
speaker A, M is the zero-mean-unit-variance operator, which
can save the trouble of adjusting the weights between the
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three components. The pitch and gain of the wrapped unit are
denoted as p,, and gy, and those of the mapped candidate unit
are denoted as py, and gn,. 6w =[0w 1, ..., Ow, 1] is the wrapped
vector applied Ly, order LSP. Similarly, 6,,=[0m 1, ..., Om, L]
is mapped candidate vector applied L;, order LSP. With
Eq. (5), we select 5 candidate units associated with minimum
1 (Uy, Um ) to construct the similarity matrix. Then, we search
for the optimal path in the constructed matrix to get the match
between the units of TTS and TTV. By replacing the TTS units
of speaker A with the TTV units for speaker B, we finally
obtain a new TTV model for speaker A, which generates
BCVs with voice characteristics of speaker A.

Using the proposed method, we can generate a large amount
of “BCV” signals that contain sufficient individual differences.
Specifically, we obtain air-conduction speech audio from the
online dataset LibriTTS [34], which consists of 585 hours of
speech records from 2,456 speakers and the corresponding
texts. Besides, we collect BCVs from 14 volunteers, and
manually construct the phoneme level corpora. Overall, the
data augmentation method is effective, which is demonstrated
through experiments in Section IV-F2.

E. Speech Recognition

Given the extracted representations of the two types of ear
dynamics, we design a deep learning architecture to infer the
speech in a user-independent manner.

1) CNN-CTC Model: The word-level speech recognition
model is shown in Fig. 12, which is based on CNNs. Among
many advanced techniques, we choose CNN since they reduce
the spectral variation and model spectral correlation [35].
Besides, the recognized speech sequence usually contains
multiple repetitions and blanks, resulting in poor readability.
We use the CTC technique to merge and align the recognized
label to realize accurate speech recognition.

Feature Extractor: BCVs and ECDMs have different phys-
ical meanings/data dimensions and convey different informa-
tion. We design two submodels for them to extract features
for word-level speech recognition. The two submodels consist
of several cascaded convolutional blocks. Specifically, we
build convolutional layers using Rectified Linear Units (ReLU)
to enhance the extracted results. Besides, we use the max-
pooling layer to perform subsampling, which is a nonlinear
compression. The BN layer [36] further improves the model
performance and stability. Due to a large number of model
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Fig. 13. The involved prototypes.

parameters, we add extra dropout layers to prevent overfitting.
Finally, the flatten layer combines the learned information and
generates the 1-dimensional latent feature.

The input representations of ear dynamics are derived from
a 2s sliding window with 50% overlap. The BCV represen-
tations are then resized to 128 x 128 x 3 to be fed into the
BCV submodel, where the chained convolutional layers use
32, 64, 128, and 128 kernels, respectively, and all kernels are
3 x 3. Besides, the six-dimensional ECDM representations
are concatenated into one matrix and input to the ECDM
submodel, which uses kernels of 1 x 9 and 1 x 3, respectively.

Feature Fusioner: Then, we propose a bilinear pooling
scheme to fuse the features of the two types of ear dy-
namics. The bilinear pooling scheme can reduce the feature
dimensions, which provides a joint representation space of the
modalities with large differences and captures small differ-
ences between different speeches. Specifically, we calculate
the outer product of latent representations of the ECDMs
(Yecpm) and BCVs (Upey) as ¥ = VEC(Yecpym ®
Upevy), where ® is the Kronecker product operator. VEC
represents a matrix vectorization operator that first converts
a matrix into a column vector via linear transformation,
then calculates the element-wise signed square-root ¥ <—
sign(¥)+/[¥], and finally applies Ly norm on W.

Speech Classifier: To realize speech recognition, we first
input the fused features W to the softmax layer to obtain
the probability of classifying the current time sequence as
a specific word y*. Then, we consider a CTC path (p =
p1, P2, ...pr) that allows blank (non-word) and word labels to
appear repeatedly to represent the final recognized speech. By
defining the CTC loss as follows:

T
Losscre = —In(P(Y|X)) = - > [Ju*. ®
Peg(Y) t=1

where Y is true speech content, ¢ represents the mapping
function from p to Y, which can be achieved by greedy search.
Overall, the parameters of the deep learning model are updated
iteratively until the loss (i.e., Eq. (6)) converges. Experiments
in Section IV-C validate that our proposed model is effective.

IV. EVALUATION

A. Experiment Setup

1) Sensing Prototypes: To include hardware diversity, three
pairs of earphones equipped with motion sensors are used to
implement EarSpy, as shown in Fig. 13. They have different
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Fig. 14. Experiment setup.
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structures, diverse wearing styles, and integrate different mo-
tion sensor chips in different locations.

2) Data Collection: We recruit 14 subjects (7 males, 7
females, ages 20-53) from colleagues and friends. Among
them, 5 males and 4 females are native English speakers,
and the others are fluent English speakers. Each participant
is asked to wear the earphone prototype and read sentences
selected from a subset of the LibriTTS corpus [34], which
includes 43 short English conversations consisting of 120
words. Fig. 14 illustrates a participant wearing the device to
collect data. Meanwhile, we use a microphone placed 30 cm
away from the participants to record their speech audio, which
is used to analyze the speech decibel level and speech content
(automatically extracted using the YouTube auto-sync en-
gine [37]). To verify EarSpy’s effectiveness, we conduct leave-
participant-out validation and a case study on eavesdropping
passwords from phone conversations. Besides, we conduct
experiments with different sampling rates, speech loudness,
and hardware to evaluate EarSpy’s robustness against various
impact factors. Furthermore, we conduct experiments to verify
the effectiveness of key algorithms. Overall, we collect 2,080
sentences for evaluation.

B. Metrics

We evaluate the performance of EarSpy for recognizing
isolated words using the precision (the ratio of the words
correctly predicted as label A to all words predicted as label A)
and recall (the ratio of the words correctly predicted as label
A to all words belonging to label A). Moreover, as words have
different frequencies in sentences, we use detection ratio (the
ratio of the number of correctly recognized words to the total
number of predicted words in a sequence) to provide word
distribution-sensitive evaluation.

C. Performance of User-Independent Speech Recognition

We study the most general attack, where we can not access
the victim’s other information except for the motion sensor
data, i.e., there are no data with speech text labels in advance to
train the model. We evaluate the user independence of our sys-
tem by conducting leave-one-participant-out validation, where
we use data from one participant for testing and data from the
remaining participants for training. Fig. 15 shows the average
precision, recall, and detection ratio across all words for each
participant. We can observe that 9 of the 14 participants receive
precision, recall, and detection ratio above 85%. The rest of the
participants have slightly worse performance, but precision,
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recall, and detection ratio are all above 70%, which is still
acceptable. The results outperform existing motion sensor-
based speech eavesdropping in the user-independent scenario,
validating the effectiveness of EarSpy.

Besides, we find that the most errors are reported by
participants 10 and 12, both of whom are female and non-
native English speakers. We find that their measured signals
differ significantly in both time and frequency domains from
those of others. We plan to enrich the training dataset in the
future to handle the wide spectrum of human speech and
diversity of ear canal dynamic motions.

D. End-to-End Case Study: Eavesdropping Passwords From
Phone Conversations

We now present an end-to-end case study of eavesdropping
on the wearer’s speech during phone conversations. We focus
on a real-world scenario where the victim wears a pair of
earphones to make a phone call to a remote caller, and tell the
password during the phone conversation. We first train a CNN-
CTC framework with a dataset that includes sequence samples
containing digits, “password”, “is”, and various other words.
To launch this attack, we recruit three new participants (2
males and 1 female) and collect data in three cases: i) sitting,
ii) sitting and nodding (light body motion), and iii) walking
(intense body motion). The conversation script is designed to
include “The password is” and a random 6-digits password.
We ask the participants to collect 20 conversations per case
and obtain 20x3x3 conversations.

Fig. 16 shows the precision, recall, and detection ratio of
EarSpy under each case. We observe that the sitting case
has the best performance, confirming that EarSpy’s practical
usability. Besides, the good performance of the sitting &
nodding case and the walking case show that EarSpy suc-
cessfully eavesdrops on the phone conversations even when
the user involves body motions. Furthermore, we find that the
frequency of different words in the sentence varies, and those
with more training samples have better performance. We will
study the detailed performance of each word in further work.

E. System Robustness

1) Impact of Sampling Rate: A low sampling rate allows
few samples to be collected and may impair the recognition
performance. We particularly evaluate EarSpy under four
sampling rates, including 400, 600, 800, and 1,000Hz. Fig. 17
shows a box plot regarding precision, recall, and detection
ratio under the four cases. We can observe a continuous
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improvement in system performance as the sampling rate
increased from 400Hz to 800Hz. We also find that the system
performance is not significantly improved when the sampling
rate increases to 1,000 Hz. This is due to the decay of BCVs
above 400Hz as it propagates via bone and tissue; the sampling
rate of 800 Hz is sufficient to capture most of the speech
information. Since today’s earphones can collect acceleration
hundreds of times per second, we believe the proposed attack
is practical.

2) Impact of Speech Loudness: The average decibel level of
human speech is estimated between 55 and 65 decibels [38]. A
louder speech enables a stronger response in the motion sensor,
which benefits speech analysis. Whereas a softer speech might
cause insufficient profiling of the speech information, thereby
impairing system performance. We study the impact of speech
loudness with varying speech average decibel levels between
40 and 70 decibels. Note that the speech average decibel level
is calculated from the air-conduction speech audio recorded
30 cm away from the wearer. We report the system perfor-
mance in Fig. 18, where precision, recall, and detection ratio
are compared according to speech average decibel levels. We
can observe that as the speech loudness grows, the system
performance shows an improvement. When the speech decibel
level is between 55 to 65, EarSpy has average precision of
94.70%, recall of 93.07%, and detection ratio of 92.54%,
respectively. The results suggest EarSpy is promising to handle
speeches with various loudness.

3) Impact of Hardware Difference: We evaluate the adap-
tiveness of EarSpy by implementing our system with three
different prototypes (as shown in Fig. 13) and collected over
200 sentences per device. In particular, we use data from each
prototype to train the speech recognition model and test it with
data from two other prototypes, denoted as cases 1, 2, and 3,
respectively. Moreover, we construct a dataset with all data
from the three prototypes, and use 70% for training the model
while the remaining 30% to test it (denoted as case 4). The
results are reported in Fig. 19. We notice that it is not easy
for the deep-learning model trained by data from one type of
hardware to generalize to other types of hardware. However,
in case 4, we can observe a significant performance increase
when the model is trained and tested with the mixed data.
The results indicate that EarSpy can be generalized to unseen
devices if we regularly update the training dataset to include
enough earphone models.
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F. Key Algorithm Evaluation

1) Effectiveness of Earphone Vibration Interference Elim-
ination: The motion sensor can be interfered by the ear-
phone’s speaker playing audio because they are in physical
contact with the same board of the earphone. We propose
to eliminate such interference by tracking the speech pitch
as described in Section III-C1. In Fig. 20, we compare the
system performance applying the proposed earphone vibration
interference elimination (EVIE) method to the same method
without applying EVIE. Apparently, EVIE can significantly
increase the precision, recall, and detection ratio in both
music and voice call cases (around 50 dB), confirming its
effectiveness.

2) Effectiveness of Handling User Dependence: We pro-
pose two algorithms to handle the dependence of ear dynamics
on individual differences. We particular compare four cases
differentiated by whether the envelope instability reduction
method (i.e., EIR€ 0,1) and data augmentation method are
applied (i.e., DA€ 0,1), namely case I: EIR=0, DA=0, case
2: EIR=1, DA=0, case 3: EIR=0, DA=1, and case 4: EIR=1,
DA=1. We conduct leave-one-participant-out-validation and
report the averaged results in Fig. 21. Obviously, the two
algorithms are critical and effective in improving the overall
system performance.

V. RELATED WORKS

Over the past few years, active efforts have been devoted to
using the zero-permission motion sensor (e.g., accelerometer
and gyroscope) for side-channel attacks.

Existing studies such as TapLogger [39], TouchLogger [40],
Accessory [41], and TapPrints [42] have shown that the motion
sensors on mobile devices can be used to infer keystroke
input on the virtual keyboard. Additionally, the motion sensors
mounted on wearable devices are usually associated with a lot
of hand or body movements. Such motion sensor data could
be decoded to infer screen-click positions [43] and password
input on real keypads (e.g., ATM keypads, real keypads) [44],
[45]. Moreover, the motion sensors can track the displacement
of motion, thus have been leveraged for localizing users and
tracking moving trajectory [46]-[48].

More recently, new security vulnerabilities of motion sen-
sors eavesdropping on private speech have drawn significant
attention. Gyrophone [6] leverages the gyroscope in a smart-
phone to recognize speech replayed by external loudspeakers.

Moreover, Speechless [7] analyzes various attacking scenar-
ios and identifies the feasibility of motion sensors picking
up sound vibrations propagating along the same surface on
which they are placed. Furthermore, Spearphone [9], Ac-
celEve [8] use the smartphone motion sensor to eavesdrop
on the speeches from reverberations generated from the same
smartphone loudspeaker. These methods focus on using mo-
tion sensors on smartphones to eavesdrop on the replayed
speech generated by loudspeakers.

Recognizing users’ live speech is more challenging and
arouses the attackers’ interest. Vibphone [10] takes advantage
of the physical contact between the smartphone and the cheek
during phone calls to capture cheek vibrations associated with
voice using smartphone motion sensors. It then decodes the
vibrations to recognize the speech content. Face-Mic [11]
shows the initial success in inferring the wearer’s live speech
and information (e.g., gender and speaker identity) using the
motion sensor embedded on AR/VR headsets. Face-Mic is
very close to our work. It profiles the facial bone-conduction
vibrations and facial motions associated with speech. In our
work, we investigate new novel features of ear dynamics
(combining bone-conduction vibrations from the ear and ear
canal dynamic motions) captured via the motion sensor on
earphones, which has not been explored previously in the
literature. Note that the ear dynamics studied by FEarSpy
and facial dynamics studied by Face-Mic have significantly
different time and frequency characteristics. Therefore, EarSpy
develops novel algorithms to parse the sensor measurements
and address unique challenges.

VI. CONCLUSION

In this paper, we present EarSpy, which is the first effort
to investigate speech eavesdropping via earphone’s motion
sensors. EarSpy leverages the accelerometer to capture the
speech-induced ear dynamics including BCVs and ECDMs,
then parses them to infer speech content. By designing several
novel signal processing algorithms and using a CNN-CTC-
based deep learning framework, EarSpy achieves accurate and
user-independent speech recognition. Extensive experiments
involving 14 participants demonstrate that EarSpy is highly
effective and robust to varying sampling rates, speech loud-
ness, and hardware. On top of revealing potential risks, we
believe EarSpy can draw more attention from manufacturers
and the research community to enhance privacy protection on
earphones.
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