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Abstract—Past tongue-jaw movement interaction systems typically require dedicated hardware and are uncomfortable to use, limiting
their scalability and generalizability. This paper introduces CanalScan, the first system that recognizes tongue-jaw movements using
commodity speakers and microphones mounted on ubiquitous off-the-shelf devices (e.g., smartphones). What inspires us is that
tongue-jaw movements always cause ear canal deformations, and we find that for different tongue-jaw movements, dynamic features of
ear canal deformations present unique patterns on acoustic reflections in the ear canal. Specifically, CanalScan first sends an acoustic
signal to the ear canal, then parses the reflection signals for tongue-jaw movements recognition. To eliminate the impacts of body
movements, we develop a body movement noise filtering method and a dynamic segmentation method to identify and separate the
tongue-jaw movements-associated ear canal deformations from other types of body movements. We further propose a sensor position
detection method and a data transformation mechanism to reduce the impacts of diversities in-ear canal shapes and relative positions
between sensors and the ear canal. CanalScan explores twelve unique and consistent features and applies a random forest classifier
to distinguish tongue-jaw movements. Extensive experiments with twenty participants validate the generalizability, effectiveness,
robustness, and high accuracy of CanalScan.

Index Terms—Human-computer interaction, tongue-jaw movement, multi-path reflection, random forest.
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1 INTRODUCTION

IN recent years, tongue-jaw movement-based interactions
have gained particular attention due to various benefits:

(i) As one of the most natural movements, tongue-jaw move-
ments are easy to perform and can present rich information
with diverse motion combinations, and (ii) Compared to
traditional interaction manners (e.g., speech recognition and
gesture recognition), tongue-jaw movements are good for
privacy due to the hidden characteristic and allow interac-
tions for those who have language barrier or poor finger
coordination. Tongue-jaw movement recognition systems
thus have gained particular attention to create an alter-
native human-computer interface (e.g., tongue-controlled
wheelchairs [1], tongue-teeth typing systems [2], and silent
speech input systems [3]). As shown in Fig. 1, changes
in tongue-jaw movements are converted into user control
commands that communicate to the targeted devices in the
user’s surrounding environment.

There have been active research efforts for recognizing
tongue-jaw movements. The computer-vision-based meth-
ods [4], [5] can track tongue positions using cameras. How-
ever, it requires a camera positioned in front of the user’s
face and the users to stick their tongues out, thereby pre-
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Fig. 1. Interaction applications based on tongue-jaw movements.

venting them from being applied to many scenarios (e.g.,
dim lighting environment and face covered by a mask) and
impairing hiding interactions. Besides, these methods also
raise privacy concerns. Alternatively, there exist approaches
employing oral cavity devices to recognize tongue and jaw
movements [1], [6]. However, all these approaches suffer
from obvious hygiene and intrusion drawbacks and impair
verbal communication and other oral functions. Addition-
ally, various wearable-sensor-based methods have been de-
veloped to monitor tongue and jaw movements [2], [7], [8].
However, the requirement of dedicated hardware with high
cost hinders them from being adopted widely.

To circumvent the limitations of prior works, this paper
proposes CanalScan, a novel approach that uses speaker and
microphone integrated into ubiquitous commodity devices
(e.g., smartphones) to support accurate tongue-jaw move-
ment recognition in real-life environments. As shown in
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Fig. 2. An illustration of CanalScan.

Fig. 2, our idea emerges from our finding that different
tongue-jaw movements cause different amounts of move-
ments of the ear canal wall in anterior-posterior, superior-
inferior, and medial-lateral, which is also supported by
existing researches [8], [9]. CanalScan employ the speaker
and microphone on the smartphone to measure such ear
canal wall movements (we refer to them as ear canal defor-
mations) and interpret them into tongue-jaw movements.

Realizing an accurate system that captures tongue-jaw
movements in real-life environments is very challenging.
Our design should consider the following aspects:

1) We profile the ear canal deformation by multi-path
reflections in the ear canal to decode tongue-jaw move-
ments. However, the multi-path reflections are sensitive
to ear canal shape and the relative position between the
smartphone acoustic sensors and the ear canal entrance,
making it intractable to profile the ear canal deforma-
tion reliably. To handle this, we design a sensor posi-
tion detection method to ensure that the smartphone
acoustic sensors are placed in the same valid zone every
time the users collect acoustic signals. Furthermore, we
design a data transformation mechanism to reduce the
instability of sensor measures.

2) The presence of extra movements between two consec-
utive tongue-jaw movements, facial expressions, and
head movements are common in real-world usage.
They introduce jitter and pause similar to tongue-jaw
movements in the received multi-path reflections [8],
[9], which is challenging to distinguish. To address
this, we segment movements based on dynamic thresh-
old generated by a percentile measurement, and select
tongue-jaw movements leveraging Support Vector Do-
main Description (SVDD) [10].

3) To ensure reliable measures, prior works mostly require
users to have minimal body motions when collecting
sensory data. However, activities of daily living (e.g.,
walking) and passive movements from vehicle moving
are inevitable in real-life environments. These body
movements usually distort the reflection patterns and
impair recognition of tongue-jaw movements. There-
fore, we propose a body movement noise filtering
method to detect the presence of noise in the collected
signals and remove the corresponding fragments.

4) We profile the tongue-jaw movements from novel fea-
tures of the acoustic signal reflected by the ear canal
wall, which has not been explored previously. Al-
though initial works show that different face-related
movements can produce unique ear canal deformation

consistent over multiple users [8], [9], the relation-
ship between the acoustic measurements and tongue-
jaw movements remains unclear. To facilitate user-
independent recognition, enhance robustness, and in-
crease accuracy, we explore twelve significant features
that are robust to user behavior diversity and move-
ment inconsistency. Random Forest (RF) classifier is
then adopted for tongue-jaw movement recognition.

In summary, our contributions are as follows:
• To the best of our knowledge, we are the first to de-

velop a tongue-jaw movement-based human-computer
interface in off-the-shelf devices. We use only the com-
modity speaker and microphone to build an active
sonar. By characterizing multi-path reflections induced
by dynamic ear canal deformation, we investigate new
measurements for tongue-jaw movement recognition.

• We design a set of novel techniques to eliminate the
impact of ear canal shape diversity and sensor posi-
tion variations on multi-path reflections. Specifically,
we propose a sensor position detection method that
monitors the relative position between acoustic sensors
and the ear canal. Moreover, we propose a multi-path
instability reduction method that selects the most sig-
nificant movement examples and converts the collected
signal into a new signal conducive to user-independent
tongue-jaw movement recognition.

• We propose novel algorithms to realize accurate and
robust tongue-jaw movement recognition in real-life en-
vironments, including a body movement noise filtering
method that detects the presence of noise in acoustic
reflections and removes the polluted fragments, and a
movement segmentation method that accurately seg-
ments and selects tongue-jaw movements from other
interference movements. Also, we explore twelve kinds
of features and adopt RF for final classification.

• We evaluate CanalScan with 20 participants extensively.
The results show that CanalScan achieves 94.84% recall
and 95.00% precision in tongue-jaw movements recog-
nition. Results also show that CanalScan can generalize
to new users without retraining or adaptation and is ro-
bust under various usage scenarios and environments.

The rest of the paper is organized as follows. We first
review several related works in Section 2. Then we show
the preliminary in Section 3. Section 4 presents the details of
system design of CanalScan. The evaluation of the system is
presented in Section 5, followed by the discussion of future
works in Section 6. Finally, Section 7 concludes the paper.

2 RELATED WORK

There have been many studies on recognizing tongue and
jaw movements due to their good privacy and capability
to present rich information. These methods vary in sensing
modalities and sensor placement. Among them, Tongible [4]
leverages RGB camera to track tongue positions. However,
it can only detect the outside-mouth tongue movements,
which limits its application scope. In addition, some meth-
ods use intraoral sensors to track tongue and jawbone
positions. For example, Tongue drive [1] utilizes magnetic
piercing devices instrumented inside the mouth that mon-
itors rich tongue gestures. Sahni et al. [3] design a tongue
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and jaw motion tracking system combining magnetic sen-
sors mounted on the tongue, proximity sensors inside the
ear, and a headset mounted magnetometer. TongueBoard
[6] is a tongue position tracking system that uses 124
capacitive touch sensors on the roof of the mouth and a
palate sensor holding in the mouth. However, the use of
intraoral sensors is inconvenient, uncomfortable, and brings
hygiene concerns. To avoid the above drawbacks, some
attempts have been made that leverage wearable devices
for permitting convenience and comfort. TYTH [2] uses
the electroencephalography sensor, the electromyography
sensor, and the miniature skin surface deformation sensor
to identify tongue movement. Tongue-n-Cheek [7] captures
tongue gestures using an array of radars integrated into
helmets. TongueSee [11] realizes high-fidelity tongue ges-
ture recognition using EMG signals from the surface of the
skin. However, the requirement of expensive and dedicated
hardware prevents them from being adopted widely.

Alternatively, the ear canal has drawn significant atten-
tion due to the close correlation between tongue-jaw move-
ments and ear canal wall motions. Some prior contributions
have been made in capturing ear pressure signals using
barometers and microphones embedded in earbuds to de-
tect facial expressions [8], [9] and tongue movements [12]–
[14]. These approaches achieve good performance over mul-
tiple users and at different times, demonstrating the feasi-
bility of capturing the ear canal deformation to recognize
tongue-jaw movements. However, measuring ear pressure
changes requires sealing the ear canal, which can signifi-
cantly affect hearing. Meanwhile, electrodes [15], infrared
LEDs [16], and proximity sensors [17], which are placed
inside the ear canal, have been exploited to recognize facial
expressions and tongue movements. However, such dedi-
cated hardware is not always available and is not compat-
ible with off-the-shelf devices. Also, placing sensors inside
the ear canal is uncomfortable and brings safety concerns.
So far, tongue-jaw movement recognition through sensing
in the ear canal still lacks highly accurate, robust, and non-
intrusive solutions.

Another aspect of related work focuses on acoustic sens-
ing in ears, such as using the in-ear microphones to cap-
ture body sounds for vital sign tracking [18], [19], human-
commuter interactions [20], [21], and extracting unique bio-
metrics [22]. In our initial study, we attempt to leverage
the in-ear microphones to capture the sounds induced by
tongue and jaw movements. However, ear canal defor-
mation induced by tongue-jaw movements often pushes
the in-ear microphones out of the ear canal, making them
unreliable for tracking the tongue-jaw movement sounds.
Moreover, [23] warns that moving the ear canal wall while
wearing earplugs can lead to collapse of the external ear
canal.

Compared with the previous efforts, CanalScan only
relies on the built-in microphone and speaker on smart-
phones, does not require additional sensors and modifi-
cation. While using CanalScan, a user holds the smart-
phone, like making a phone call, which is unobtrusive, non-
intrusive, and user-friendly. By analyzing dynamic acoustic
properties of ear canal deformation, CanalScan achieves high
accuracy and robust tongue-jaw movement recognition in
real-life environments.
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Fig. 3. Structure of human ear.

3 PRELIMINARY

In this section, we first describe the basics of the ear struc-
ture. Then, we introduce the sensing principle of ear canal
deformation. Afterward, we present the basics of multi-path
propagation. Finally, we show the observations which val-
idate the feasibility of using ear canal deformation-related
acoustic signals for tongue-jaw movement recognition.

3.1 Basic of Ear Structure
The ear can be divided into three parts, outer ear, middle
ear, and inner ear (as shown in Fig. 3). The outer ear is
the part of the ear that can be seen from the outside of the
human body, which consists of the pinna and the ear canal.
The ear canal is a roughly S-shape passage comprised of
bone and skin leading to the eardrum, which mainly has
a length of about 30 mm [24]. Its primary function is to
transmit sound to the tympanic membrane and protects the
middle and inner ears. Under the skin of the ear canal is the
cartilage laterally and bone medially. Although the shape
and size of the cartilaginous portion and bony portion of
the ear canal vary among individuals, the skeletal structure
is essentially the same for all individuals.

3.2 Sensing Principle of Ear Canal Deformation
Promoting tongue and jaw movements requires the active
participation of masticatory muscles bilaterally and both
temporomandibular joints. Fig. 4 shows the musculoskeletal
system related to the movement of the tongue and jaw.
When the user performs a tongue-jaw movement, the mus-
culoskeletal system changes, which affects the shape of the
ear canal. Particularly, the positional relationship between
the ear canal and the mandibular condyle changes when
the jaw is moved, which causes the ear canal deformation.
The styloglossus muscle starts from the styloid process and
ends at the junction of the hyoid body and the greater
horn of the hyoid bone. The main function is to retract and
elevate the tongue, which will relax or contract according
to the tongue and thus change the shape of the ear canal.
The genioglossus muscle is responsible for protracting the
tongue and has the same principle as the styloglossus. In
addition, the sternocleidomastoid muscle, which connects
the back of the ear to the clavicle, either relaxes or contracts
when the face or head is moved. This also changes the shape
of the ear canal by expanding or compressing the ear canal.

When performing different tongue and jaw movements,
different changes in the ear canal shape are introduced
due to the above factors. Subsequently, the acoustic signal
reflected by the ear canal wall implies the generated tongue-
jaw movement’s characteristics. Therefore, we can recognize
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Fig. 4. Musculoskeletal system related to the movement of the tongue
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tongue-jaw movements by characterizing changes in the
multi-path reflections caused by ear canal deformation.

3.3 Basic of Multi-Path Propagation

An acoustic signal reflected by different surfaces could
produce multiple reflections with different propagation di-
rections, amplitudes, and phases. Such reflections are called
multi-path reflections and have a long and rich research
history in capturing the geometry of certain surfaces [25]–
[27]. Given an acoustic signal R(t) = sin(2πft + φ) with
the frequency f and the initial phase φ, the received signal
at time t can be defined as:

R(t) =
∑
i∈χ

Aisin(2πft+ φi), (1)

where χ is the set of acoustic signals of all paths, φi is the
phase change coefficient.Ai depicts the amplitude reduction
and Ai ∝ 1/di with di representing the corresponding
propagation distance.

When emitting an acoustic signal to the ear canal, the ear
canal deformation can induce multi-path reflections while
performing tongue-jaw movements. Different tongue-jaw
movements cause the ear canal wall to move differently,
thus presenting unique information in the multi-path re-
flections. We are motivated to exploit the uniqueness of the
acoustic reflections in the ear canal for tongue-jaw move-
ment recognition.

3.4 Observations

According to [15]–[17], [28], tongue and jaw reaching out
to different areas cause different amounts of movements of
ear canal wall in anterior-posterior, superior-inferior, and
medial-lateral. In other words, ear canal shape and volume
change upon tongue and jaw movements. When an acoustic
signal is sent into the ear canal, ear canal deformations cause
variations in acoustic reflections.

To demonstrate the feasibility of using acoustic reflec-
tions to characterize different tongue-jaw movements, we
conduct experiments on a smartphone that continuously
sends 16kHz acoustic signals and collects acoustic reflec-
tions at 48kHz. While the design space of tongue-jaw move-
ments is large, we focus on six tongue-jaw movements
performed in different areas of the oral cavity, as shown in
Fig. 5. These tongue-jaw movements are composed of two
stages: (i) the tongue starts from the back of the teeth, licks

(a) Movement 1 (b) Movement 2 (d) Movement 4(c) Movement 3 (e) Movement 5 (f) Movement 6

Direction of tongue movement Area of tongue movement

Fig. 5. An illustration of six movements involving the tongue and jaw.

over the teeth, reaches the front of the teeth, and the jaw
moves naturally with the movement of the tongue. (ii) the
tongue returns to the back of the teeth, and the jaw returns
to its original position. The selected six movements have
wide user acceptance and are natural to perform. We ask
two volunteers to hold the smartphone as if they are on the
phone, align the top microphone and earpiece speaker with
the ear canal entrance, and synchronously perform the six
tongue-jaw movements, respectively. In particular, volun-
teer 1 rotates the smartphone counterclockwise around the
sensor-to-ear axis by 135 degrees and 140 degrees, then col-
lects continuous reflections twice, respectively. Volunteer 2
rotates the smartphone counterclockwise around the sensor-
to-ear axis by 140 degrees and collects continuous reflections
twice.

We then extract the multi-path reflection envelope in
the time window and illustrate examples of the movement
patterns of six tongue-jaw movements in Fig. 6.

Feasibility: The reflection envelope shows that each kind
of tongue-jaw movement has unique patterns, such as the
same number of peaks, the same or near positions for peak,
trough, and turning point. This demonstrates the feasibility
of characterizing different tongue-jaw movements based on
multi-path reflection from the ear canal.

Interference: Meanwhile, we can observe that two in-
stances collected from the same movement in the same
situation are slightly different in curve shape and signal
amplitude. Also, when volunteer 1 rotates the smartphone
acoustic sensor at different angles, envelopes from the same
movement differ in curve shapes and signal amplitudes,
such as movement 3 and 4. Moreover, when two volunteers
rotate the sensor at 140 degrees, the same movement can
have different curve shapes and signal amplitudes, such as
movement 1, 3, and 5. The results demonstrate the impacts
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of movement inconsistency, acoustic sensor position differ-
ence, ear canal shape difference, and user behavior diversity.

According to our experiments, the presence of peak and
trough is caused by changing movement directions of the
ear canal wall. The curve shape and signal amplitude are
related to ear canal shapes and sensor positions. Therefore,
to address ear canal shape diversity and relative position
difference between acoustic sensors and the ear canal, we
need to modify information related to ear canal shape and
sensor position (e.g., curve shape and peak amplitude)
while keeping motional information (e.g., number of peaks
and peak/trough position) unchanged.

4 SYSTEM DESIGN

In this section, we present the design of CanalScan, which
recognizes tongue-jaw movements through acoustic sensing
and captures unique patterns of ear canal deformation.

4.1 Overview

CanalScan utilizes the off-the-shelf speaker and microphone
integrated into smart devices (e.g., smartphones) for tongue-
jaw movement recognition. Fig. 7 shows the overall design
of CanalScan, which is mainly comprised of five models:
Acoustic Signal Collection, Tongue-Jaw Movement Segmentation,
Body Movement Noise Filtering, Multi-Path Reflection Instabil-
ity Reduction, and Tongue-Jaw Movement Recognition.

In Acoustic Signal Collection, the earpiece speaker and
top microphone of a smartphone serve as an active sonar,
which generates inaudible acoustic signals and collects their
reflections. Sensor Position Detection is performed to monitor
the relative position between acoustic sensors and the ear
canal and assist users in placing the acoustic sensors in the
same valid zone every time they use CanalScan.

In Tongue-jaw Movement Segmentation, we first segment
all possible movement frames with a dynamic threshold. We
then use a pre-trained Support Vector Domain Description

(SVDD) [10] classifier to select real tongue-jaw movements
from extra movements and non-tongue-jaw movements.

After Tongue-Jaw Movement Segmentation, the body move-
ments between tongue-jaw movements are eliminated, but
those overlapping the tongue-jaw movements are retained.
Therefore, we perform Body Movement Noise Filtering to elim-
inate the signals contaminated by body movement noise.
Specifically, we develop a body movement noise identifica-
tion method using an extreme learning machine (ELM) and
optimize its parameters using a particle swarm optimization
(PSO) algorithm. If body movement noise is detected, we
further filter out the corresponding frames to eliminate the
impact of body movement noise.

During Multi-Path Reflection Instability Reduction, enve-
lope segments of each tongue-jaw movement serve as input.
We first apply Dynamic Time Warping (DTW) and Gaussian
Mixture Model (GMM) to separate the input signal. We then
leverage Kullback-Leibler (KL) divergence to generate a dis-
tance matrix that describes the similarity between Gaussian
components from the input signal and envelope examples.
Afterward, we select Gaussian components from examples
that are most similar to Gaussian components of the input
signal and generate a target vector. Finally, we transform
the input signal into a new signal with characteristics of
the target vector based on Minimum Mean Square Error
(MMSE). To find the most significant envelop examples,
we perform Envelope Examples Selection through modeling
of the within-class distance and between-class distance of
each candidate envelope example.

In Tongue-Jaw Movement Recognition, User-independent
Feature Extraction extracts twelve statistic features unique to
each tongue-jaw movement and consistent across different
users. A Random Forest (RF) classifier is used to obtain
a prediction probability for each tongue-jaw movement.
CanalScan takes prediction with the highest probability as
the recognized tongue-jaw movement.

Fig. 8 shows the walkthrough of the detection system.
Firstly, we check the relative position between the smart-
phone and the ear canal. If the smartphone is aligned and
the rotation angle is appropriate, the system will continue to
collect and process data. Otherwise, the system will prompt
the user to adjust the smartphone position. The acoustic
signals induced by tongue-jaw movement are then seg-
mented and transformed to facilitate the subsequent train-
ing. If the tongue-jaw movement segments are distorted by
body movements, we eliminate them, and we only process
those that are not contaminated by body movements. In
the tongue-jaw movement recognition phase, we extract
features, and then make the prediction decision according
to the pre-learned knowledge.

4.2 Acoustic Signal Collection

4.2.1 Acoustic Signal Selection

There are several considerations in selecting the excita-
tion acoustic signal. It should be as inaudible as possible
to avoid annoyance. Sounds above 16kHz are candidates
because they are hard to hear for adults over 25 [29].
Most smartphones support a sampling rate of 48kHz, so
the excitation acoustic signal is restricted to below 24kHz.
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However, speaker and microphone distortion at high fre-
quencies narrows our choices to below 17kHz [30]. To
enable CanalScan compatible with various smartphones, we
send 16kHz sound to overcome the frequency selectivity of
acoustic sensors and collect its reflection at 48kHz.

4.2.2 Sensor Position Detection
For reliable multi-path reflection collecting, two conditions
need to be fulfilled. One is to allow the sensor to collect ef-
fective multi-path reflection, which has strength correspond-
ing to the direction, speed, and intensity of the movement
of the ear canal wall. The other is to minimize the relative
position difference between the sensor and the ear canal
entrance every time acoustic signals are collected. Note
that the smartphone should be pressed on the ear to avoid
interference from the surrounding environment. Thus, there
needs no adjustment of the distance between the acoustic
sensor and the ear canal entrance.

Alignment Detection Most readily available smart-
phones employ a slender earpiece speaker about 1cm long
and mount a smaller top microphone inside the earpiece.
The ear canal entrance of an adult is about the size of the
speaker. Therefore, the acoustic sensor should be placed in
a valid zone to collect effective multi-path reflection in the
ear canal. In other words, the sensor should be aligned with
the ear canal. However, it is very difficult to determine the
relative position between the ear canal entrance and the
acoustic sensor.

We solve this with a simple but efficient mechanism. We
let users perform a pre-agreed tongue-jaw movement. If a
unique pattern presents in the collected reflection signal,
we consider that as aligned. Otherwise, we consider that as
not aligned. Specifically, movement 4 that involves larger
jaw and tongue motions is employed as the pre-agreed
movement. We determine whether the acoustic sensors are
aligned with the ear canal by checking whether the reflec-
tion envelope has more than two peaks or troughs with
prominence higher than 30% of the maximum prominence
of the highest peak and lowest though, which is observed
through experiments.

Rotation Angle Detection: To measure the angle of
smartphone rotating around an axis, coordinate system con-
version is often required to address data variety caused by
users facing different directions. However, data conversion
between coordinate systems is time-consuming. Instead, we
design a lightweight algorithm to work in different facing
directions. Fig. 9 shows an example of the smartphone coor-
dinate system, sensor-to-ear-canal-axis, and rotation angles.
We define the intersection line of the X-Y plane and gravity-
Z plane along the smartphone’s bottom as the start direction

Y axis X axis

Z axis

Gravity Starting Direction

β 

Gravity

Y axis
X axis

Z axis

Starting Direction

Sensor-to-Ear Canal axisAcoustic Sensor 
(Top Microphone & 
Earpiece Speaker)

α

β 

Fig. 9. Rotation angle and smartphone coordinate system.

of rotation. We define the acoustic sensor rotating α degrees
around the sensor-to-ear-canal-axis, and the smartphone
rotates β degrees around its Z-axis. When the acoustic
sensor is aligned with the ear canal, the sensor-to-ear-canal-
axis is parallel or nearly parallel to the smartphone Z-axis.
We can easily derive that α equals β, which is the angle
between the starting direction and the smartphone X-axis.
Therefore, we now turn to the problem of obtaining β.
Fortunately, inertial measurement unit mounted on modern
smartphones provide easy access to such tilt angle:

β = arctan(
gx
gy

) +
π

2
, (2)

where gx and gy is the gravity component in X and Y axis.
Gravity is typically derived from the accelerometer where
the magnetometer and the gyroscope help remove the linear
acceleration from the data.

According to our experiment with 50 people, a comfort-
able posture of holding the smartphone close to the ear canal
(like making a phone call) is to make the smartphone rotates
130-140 degrees. By calculating the smartphone rotation
angles, we guide the users to rotate the smartphone at the
same or similar angle when collecting signals. Thus, we
can minimize the relative position difference between the
acoustic sensor and the ear canal during each collection and
mitigate the impacts of various relative positions on multi-
path reflections.

4.3 Tongue-Jaw Movement Segmentation

Tongue-jaw movement segmentation is a two-step process:
the first step is to segment all candidate movements; the
second step is to select tongue-jaw movements from other
movements.

4.3.1 Movement Segmentation

The tongue and jaw pause for a very short while be-
tween two consecutive tongue-jaw movements to felicitate
segmentation. Intuitively, we can segment movements by
detecting a pause and a huge jitter in the envelope signal.
We make use of the fact that the first derivative of jitters is
high, and the first derivative of pauses is low and relatively
stable. The first derivative that exceeds a certain threshold
at a point is considered the start of a movement, and that
is below a certain threshold for a while after a point is
considered the end of a movement. The threshold T must
be sufficiently small to capture all tongue-jaw movements
but sufficiently large to avoid capturing random noise in
the collected signal. However, finding the threshold suitable
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Fig. 11. Examples of extra movement, facial expression, head movement, and tongue-jaw movement.

for everyone is extremely difficult due to diversity in move-
ment amplitude range and noise uncertainty. Therefore,
we determine a dynamic threshold by using a percentile
measurement procedure.

Given the absolute value of the first derivative of the
input signal, we first calculate its intensity distribution I(a),
which is weighted according to the scattering intensity of
signal strength a [31]. Then, the threshold T is calculated as∫ T
0 I(a)da = A%. Fig. 10 shows an example of calculating

threshold T based on intensity distribution. We set A as 63
based on our experimental study.

4.3.2 Tongue-Jaw Movement Detection
Extra movements of the tongue and jaw are often required
when switching between two consecutive tongue-jaw move-
ments. In addition, facial expressions, head movements,
and other movements are common in real-world use. To
avoid high computational costs and misclassification, we
only take real tongue-jaw movements for further process
and recognition.

Fig. 11 illustrates the envelope of extra movement be-
tween two consecutive movements, facial expression, head
movement, and tongue-jaw movement, respectively. The
blue dash lines mark the start and end of each movement. A
key observation is that tongue-jaw movements have more
peaks, and the peaks are sharper. This motivates us to
discriminate between six tongue-jaw movements and other
movements using a statistical-based method. We first extract
features to represent each segmented movement, including
kurtosis, standard derivation, length, and the number of peaks.
Then, we use a classifier to select tongue-jaw movements.
Since non-tongue-jaw movements are unpredictable and
training the classifier with limited samples leads to limited
accuracy, we employ a one-class classifier, SVDD. We take
six tongue-jaw movements as a whole to train a tongue-
jaw movement class. SVDD determines the boundary of
the tongue-jaw movement class and assigns a sample to
that class according to whether it falls within or outside
the boundary. After that, facial expressions, head move-
ments, extra movements, and other movements outside the
boundary are discarded, and tongue-jaw movements are
further processed and recognized by the following proposed
techniques. Specifically, SVDD receives 93.88% recall and
91.93% precision, which is described in Section 5.5.

4.4 Body Movement Noise Filtering
In Section 3.4, we demonstrate the feasibility of character-
izing tongue-jaw movement based on multi-path reflection

from the ear canal. In the experiment, participants are
required to maintain stationary while collecting acoustic
signals. However, users inevitably involve body movements
in real-life environments, making the collected multi-path
reflections unreliable. After interviewing many volunteers,
we find that the common usage scenarios of tongue-jaw
movement-based interactions include standing still (static
state), sitting in a car (containing environment noise), and
walking (containing body movement noise). Fig. 12 illus-
trates the envelope of acoustic reflection caused by perform-
ing movement 4 under the three conditions. We can observe
that noise significantly distorts the shape of the acoustic
reflection envelope more than that under the static state.
Characterizing the acoustic reflection envelope contami-
nated by noise would lead to poor movement recognition
performance. Therefore, it is necessary to identify the pres-
ence of noise before recognizing tongue-jaw movements.

After careful research with twenty participants, we find
that the relative position between the smartphone acoustic
sensor and the ear canal changes when the human body
is moving. Hence, we analyze the rotation angle of the
smartphone for body movement noise identification. Fig. 13
shows examples of smartphone angles of static state and
moving state. Different instances are illustrated in different
colors. We can observe that the body movements lead to
time-varying rotation angles, and the variation ranges are
different across instances. However, we can also observe
that the rotation angle variation pattern in the moving
state (e.g., Instance 1) could be very similar to that in the
stationary state. Therefore, identification of body movement
noise should be designed carefully to ensure efficiency.

4.4.1 Body Movement Noise Identification

Noise detection is essential to ensure signal quality. To this
end, we develop an extreme learning machine (ELM)-based
body movement noise identifier. Compared with other noise
identification solutions, such as Convolutional Neural Net-
work (CNN), ELM has a low computational cost and can
handle the variation of rotation angles well. Moreover, its
performance is less subjected to user-specified parameters.
Although ELM has been previously applied to human ac-
tion recognition [32]–[35], to the best of our knowledge
never for our application scope.

We apply a 2 seconds sliding window with 50% overlap
to process the rotation angle data. In each window, we
extract mean, max, min, standard deviations, auto-regression
coefficients, entropy, and energy to build the data represen-
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Fig. 12. The reflection envelope of movement 4 under three conditions.
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Fig. 13. Rotation angle of different body state.

tation to input to the ELM. Given the input Hi and the
corresponding label Ti, the output of ELM is modeled by

f(Hi) =
∑

λ ·G(W ·Hi + bi), (3)

where G is the activation function. W, bi, and λ denote
the input weights, biases to the hidden layer, and output
wrights, respectively. We rewrite Eqn (3) as f(Hi) = Kλ,
where K is the hidden layer output matrix defined as:

K =

G(W1H1 + b1) · · · G(WLH1 + bL)
...

. . .
...

G(W1HN + b1) · · · G(WLH1 + bL)

 , (4)

where N is the sample length and L is the number of
hidden notes. The ELM classifier is trained to minimize the
difference between output labels and the true labels of the
input samples. Specifically, we first assign random values to
W and bi and optimizes λ via least squares.

To eliminate the sensitivity of ELM to the number of
hidden neurons, input weights, and bias values, we use
the particle swarm optimization (PSO) algorithm [36] to
optimize the three parameters. Given a swarm of particles at
position p = {p1, ..., pd} with velocity v = {vi, ...vd}, PSO
firstly assigns p and v arbitrarily, then iteratively updates
their values according to

vi(t+ 1) = ρ · vi(t) + c1 · r1(p∗i (t)− pi(t))
+ c2 · r2(p∗g(t)− pi(t)),

pi(t+ 1) = pi(t) + vi(t+ 1),

(5)

where r1, r2 are within [0,1] range to maintain the diversity
of the population. c1 and c2 are the positive coefficients of
the self-recognition component and the social component,
respectively. p∗i denotes the best position of the particle i at
each iteration, while p∗g denotes the best position of optimal
particle in the swarm at each iteration. ρ is the inertia factor
defined as,

ρ = ρmax −
ρmax − ρmin

I
× t, (6)

where ρmax and ρmin represent the upper and lower bounds
of ρ. I is the allowed iteration number, and t is the iteration
count.

We consider an ELM as a particle. The variable p can be
expressed as

p =


ρ11 ρ12 · · · ρ1N b1
ρ21 ρ22 · · · ρ2N b2
...

...
. . .

...
...

ρL1 ρL2 · · · ρLN bL

 , (7)

where bi is the biases of ith hidden neurons. By treating
ρ as the input weighs, the optimization is implemented
of finding the globally optimal particle. We evaluate the
performance of the developed method in Section 5.5.5. The
results demonstrate that the recall and precision reach the
best performance of 93.23% and 93.07%, respectively, when
using 55 hidden nodes. Therefore, we use 55 hidden nodes
for body movement noise identification.

4.4.2 Body Movement Noise Removal
The impacts of body movement noise on the acoustic reflec-
tion envelope of tongue-jaw movements are complex and
unpredictable. The signal envelope is significantly distorted
when body movements are detected in the data window.
Building noise elimination algorithms require substantial
computational effort and can only work in limited scenarios.
Instead, we consider the periods with noise unrecoverable.
We remove data periods affected by body movements and
only perform classification during non-body movement pe-
riods. Such a strategy is adopted by many well-recognized
existing systems [37], which gives a delayed response in-
stead of an error response.

We also find that the acoustic measurements contami-
nated by noise may not be continuous. The interval be-
tween two adjacent noisy periods can be much shorter
than a complete tongue-jaw movement, which does not
allow CanalScan to extract enough features for tongue-jaw
movement recognition. Hence, we remove the interval of
less than τ seconds between two adjacent noise periods. We
set τ to be 1 experimentally.

4.5 Multi-Path Reflection Instability Reduction
Multi-path reflections are highly sensitive to ear canal shape
and the relative position between the smartphone acoustic
sensor and the ear canal. To overcome the instability in
multi-path reflection caused by these factors and facilitate
robust tongue-jaw movement recognition, we propose a
data transformation technique and propose an effective
method to select essential envelope examples.

4.5.1 Design Guidelines
We aim to reduce pattern instability through a transform
function. Such a transformation process involve two design
guidelines:
• Data from the same tongue-jaw movement should be

more similar after transformation.
• Data from different tongue-jaw movements should be

distinct after transformation.
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Fig. 14. An illustration of the data transformation process.

Based on the above goals and our discussion in Section 3.4,
we aim to modify information related to ear canal shape
and sensor position (e.g., curve shape and peak amplitude)
while keeping motional information (e.g., number of peaks
and relative peak/trough position) unchanged. The basic
idea is to generate a representative target vector for each
type of tongue-jaw movement, then derive the statistical
relations between the target vector and the collected data,
and finally transform the collected signal into a new signal
with characteristics of the target vector.

4.5.2 Data Transformation Process

Data transformation techniques have been investigated for
voice generation [38] and data augmentation [39]. However,
they usually build user-specific models and demand a large
amount of reference data to learn the mapping between a
reference signal and the pre-transformation signal, which
makes them unsuitable for our system. Therefore, we pro-
pose a user-independent data transformation method based
on only six envelope examples.

Fig. 14 illustrates the process of data transformation. The
envelope examples are random selections of representative
envelopes. We consider the envelope of the newly collected
data x and stored envelope examples of six tongue-jaw
movements ym,m = 1, 2...6 are vectors with different
lengths.

Step 1: We first adopt the DTW method to process them.
After that, x and ym are time-aligned.

Step 2: We then apply Gaussian Mixture Model (GMM)
to represent them as the sum of K multivariate Gaussian
function:

Px =
∑K
i=1 αiN (µi, σi), (8)

Pym
=
∑K
j=1 βjN (µj , σj), (9)

whereN is the normal distribution with the constraints that∑K
i=1 αi = 1, αi > 0 and

∑K
j=1 βj = 1, βj > 0.

Step 3: Since we do not know what kind of tongue-jaw
movement is performed, we introduce a distance matrix to
find the most similar components in the stored templates.
Specifically, we adopt the Kullback–Leibler (KL) divergence
to measure the distance of two Gaussian components. Each
entry Di,j of the distance matrix is calculated as:

Di,j =
1

2
[KL(Nµi,σi

||Nµj ,σj
) +KL(Nµj ,σj

||Nµi,σi
)],

(10)

where the KL divergence is defined as:

KL(Nµi,σi ||Nµj ,σj ) = log
σj
σi

+
(µi − µj)2 + σ2

i − σ2
j

2σ2
j

.

(11)

Step 4: Then, we search the distance matrix to find K
components from the Gaussian distribution set that are most
similar to the K components from the collected data. In
our case, those with the minimum distance are considered
the most similar components. We add up K components in
the form of GMM to obtain the probability density of the
representative target vector y′:

Py′ =
∑K
i=1 γi{N (µj , σj)|argminDi,j}. (12)

By applying Bayes’s rule, the weight of each component
is defined as follows:

γi =
αiN (µi, σi)∑K
j=1 αjN (µj , σj)

. (13)

Step 5: We now turn to the problem of finding a transfor-
mation function to transform the collected data x into the
target vector y′. Motivated by speech transformation [40],
we introduce a transformation function F(x) assumed by
the Minimum Mean Square Error (MMSE) estimation:

F(x) = E(y′|x)

=

∫
y′P (x,y

′)

Px(x)
dy′,

(14)

where Px(x) is the probability density of x, which is
modeled by Equ (8). The joint probability density P(x,y

′)
should be modeled carefully to refine the description of
the statistical distribution of x and y′. Therefore, we apply
GMM to model the joint vector z = [xT ,y′T ]T . The choice
of GMM is based on its ability to provide a soft classification,
and the desired transformation relationship between the
target vector and the collected data only relies on their
time index. The two-dimensional joint probability density
is defined by:

Pz =
K∑
i=1

ωiN (µi,Σi),
K∑
i=1

ωi = 1, ωi > 0, (15)

where mean µi and covariance matrix Σi are defined by:

µi =

[
µx
i

µy′

i

]
, Σi =

[
cov(x,x) cov(x,y′)
cov(y′,x) cov(y′,y′)

]
, (16)

where cov is the covariance operator. To fit GMM with
the weights, means, and covariance matrix, we adopt the
Expectation Maximization (EM) algorithm.

Proceeding as before yields a transformation function
from Equ (14) in the following:

F(x) =
M∑
i=1

Py(Ci|x)[µy +
cov(y,x)

cov(x,x)
(x− µx)], (17)

in which Py(Ci|x) is the conditional probability that x be-
longs to component Ci. Through the application of Bayes’s
rule, it is easily derived that Py(Ci|x) can be calculated
using Equ (13). Using more GMM mixture components can
better model the signal, but also cause high computational
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costs. In our case, 12 GMM components are used. After be-
ing processed by data transformation, differences between
data from the same tongue-jaw movement are effectively
reduced, and data from different tongue-jaw movements
and non-tongue-jaw movements are still distinct.

Since this data transformation technology reduces the
impacts of ear canal shape diversity and phone position
difference on the reflection signal, it improves the average
recall from 69.35% to 91.41%, and the average precision
from 70.46% to 91.58%. Experiment details are described
in Section 5.5.

4.5.3 Envelope Example Selection

The transformation process converts the input data to a
new vector based on the similarity between the input data
and envelope examples that represent six tongue-jaw move-
ments. It is essential to select envelope examples to provide
the basics of data transformation. There are two selection
criteria:
• Because an envelope example represents a tongue-jaw

movement, it should exhibit general features, i.e., the
selected envelope example should be very similar to
those belonging to the same tongue-jaw movement.

• The ultimate goal of data transformation is to distin-
guish different tongue-jaw movements. Envelope ex-
amples of different tongue-jaw movements should be
distinct to facilitate recognition.

We collect ear canal reflections from multiple participants
and form a dataset of tongue-jaw movement envelope ex-
amples Y = {yi,i=1,...,N}. Selecting of the most significant
example of each tongue-jaw movement is to solve an op-
timal subset Y ′ = {y1, y2, y3, y4, y5, y6}, where subscripts
1 to 6 represent six tongue-jaw movements. We propose to
model the within-class and between-class distances and find
examples with minimal within-class and maximal between-
class distances. The six tongue-jaw movements are denoted
as six classes Cl,l=1,2,..,6. The subset selection problem is
defined as:

arg min
yi

∑
i,j d(yi, yj)νi,j∑
i,j d(yi, yj)ηi,j

, (18)

where d(yi, yj) measures the Euclidean distance between
normalized examples yi and yj . Two-dimensional weight
matrices νi,j and ηi,j describe the relationship between yi
and yj . If yi and yj belong to the same class Cl, νi,j = 1,
otherwise, νi,j = 0. Thus,

∑
i,j d(yi, yj)νi,j models the total

within-class distance between yi and Cl. Our objective is a
small within-class distance. To obtain ηi,j , we first determine
Kd-nearest neighbors of yi. If yj is one of the Kd-nearest
neighbors of yj , and yi does not belong to the same class,
we set ηi,j and ηj,i to be 1, otherwise, to be 0. When yi has
small between-classe distances,

∑
i,j d(yi, yj)ηi,j should get

a smaller value.
Fig. 15 shows the selection process. The candidate enve-

lope examples collected from multiple users and different
sessions are firstly normalized and input to the weight
metrics generator. The weight matrices generator is the core
of the proposed method. It groups the candidate examples
into six classes and determines the Kd-nearest neighbors
of each example. After that, νi,j and ηi,j of each example

Samples

Normalizer

Weight matrices generator
C1 C2 C3 C4 C5 C6

𝜈𝑖,𝑗

𝜂𝑖,𝑗 Envelope samples selector
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𝜂𝑖,𝑗...

...
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𝜈𝑖,𝑗 𝜈𝑖,𝑗

Fig. 15. An illustration of envelope examples selection process.

are generated. Finally, the envelope example selector mod-
els the within-class distance and between-class distance of
each candidate example based on Equ (18). By finding the
examples with the minimum within-class distance and the
maximum between-class distance, we determine the most
significant examples for data transformation.

4.6 Tongue-Jaw Movement Recognition

4.6.1 Feature Extraction

Intuitively, we can recognize different tongue-jaw move-
ments with similarity matching (e.g., DTW method). How-
ever, it is arduous to generate standard templates for each
type of tongue-jaw movement because of the diversity of
movements performed by different users. Instead, we ex-
tract unique and consistent statistic features of each type of
tongue-jaw movement. The basic idea is to build a database
with profiles of each type of tongue-jaw movement before
classification, and use it to train a classifier to infer the
performed tongue-jaw movement.

We select over fifty candidate features by extensively
exploring the features suggested by plenty of related sys-
tems and applying the feature extraction toolbox (e.g., ts-
fresh [41]). These features characterize the acoustic reflection
envelope in both the time and frequency domains. But
using redundant features would degrade the classification
performance. Therefore, we apply an RF classifier to rank
these features by feature importance feedback and evaluate
the importance of features on the movement classification
task [42]. We pick twelve kinds of features that contribute
most to recognizing various tongue-jaw movements, includ-
ing variance, absolute energy, vectorized approximate entropy,
autocorrelation, count above/below mean, the first location of max-
imum/minimum, linear least-squares regression, the mean over
the absolute differences between subsequent time series values,
mass center index, and energy ratio of ten chunks. Fig. 16 shows
the t-SNE (t-distributed stochastic neighbor embedding)
projections of features from five volunteers, with each user
performing six tongue-jaw movements six times. We can
observe that the extracted features are consistent for the
same tongue-jaw movement and are unique across different
tongue-jaw movements.

4.6.2 Tongue-Jaw Movement Classification

We employ Random Forest (RF) to train a six-class classier to
recognize different types of tongue-jaw movements. We feed
twelve kinds of features extracted from reflection envelopes
into the RF classifier and obtain prediction probabilities for
the input data. Then we take prediction with the highest
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probability as the recognized tongue-jaw movement. Al-
though several classifiers such as decision tree, support vec-
tor machine, and k-nearest neighbor perform well in related
works, we choose RF because it has the best performance in
our experimentally study, which is presented in Section 5.5.

5 EVALUATION

5.1 Implementation

We implement CanalScan to verify its performance in rec-
ognizing tongue-jaw movements. In our proof-of-concept
implementation, we use LIBAS [43] to send acoustic signals
at 16kHz and receive the reflections at a sampling rate of
48kHz. LIBAS is a cross-platform framework that simplifies
the development of acoustic-based applications. Using the
server-client remote mode of LIBAS, we transfer the acoustic
measurements to a laptop (i.e., Intel Core i7-11800H, 16GB
RAM, and Nvidia GeForce GTX 3050Ti graphics card) and
perform data processing in MATLAB.

5.2 Experimental Setup

There exists no state-of-the-art dataset of acrostic reflection
from the ear canal. Therefore, we collect our dataset in
real-life environments to evaluate CanalScan. We recruit 20
adult participants (10 males and 10 females) from colleagues
and students at the institution. All participants are healthy,
right-handed, and cleaned their ears before collecting ex-
perimental data. This study is conducted with the approval
of our institute’s IRB. During the data collection phase, we
ask participants to align the top microphone and earpiece
speaker with their ear canals and simultaneously press the
smartphone tightly. To accommodate slight sensor position
differences, we encourage participants to rotate the smart-
phone 130-140 degrees. Participants are asked to perform
the six tongue-jaw movements for 5 sessions, each session
includes 10 rounds, and each round lasts 2-4 minutes.
Between sessions, every participant takes a five minutes
break. The start and end of each tongue-jaw movement are
indicated by clicking a computer mouse.

To evaluate the key algorithms and explore the robust-
ness of CanalScan against various issues, we ask partici-
pants to collect data with various sensor rotation angles,
different devices, and diverse body motions. In addition,
we evaluate CanalScan in long-term study. Moreover, we
conduct experiments in common and representative real-life
scenarios covering stationary (noise-free), slight noise, and
intense noise conditions.

To evaluate CanalScan, we define several metrics as fol-
lows:

Confusion Matrix: Each row of the matrix represents the
ground truth while each column represents the predicted
results. Each entry ci,j of the matrix shows the percentage
of instances belonging to the ith class predicted as the jth

class to all instances belonging to the ith class.
Precision: the ratio of the instances correctly classified as

label A to all instances predicted as label A.
Recall: the ratio of the instances correctly classified as

label A to all instances belonging to label A.

5.3 Overall Performance of Tongue-jaw Movement
Recognition

We first evaluate the tongue-jaw movement recognition per-
formance of CanalScan through conducting five-fold cross-
validation. Fig. 17 shows the confusion matrix of the recog-
nition results. Each entry is the average result of five ses-
sions across 20 participants. The entries on the diagonal
show the average accuracy of recognizing each tongue-jaw
movement, which reaches 94.06%, 93.23%, 94.99%, 96.90%,
95.08%, and 94.78%, respectively. Overall, the average recall
and precision are 94.84% and 95.00% respectively which
demonstrate that CanalScan achieves accurate recognition of
tongue-jaw movements. We find that movements 4 and 5
receive higher recall and precision than other tongue-jaw
movements. A possible reason is that they involve more
significant lower jaw movements, making the ear canal de-
formation reflections more distinguishable. After carefully
interviewing participants, we find that some participants
like to clean their ears after bathing or swimming, which
could affect the reflection properties and consequently cause
recognition errors.

5.4 Use Issue Study

We study the performance of CanalScan from many as-
pects, including universality across users, stability against
movement inconsistency, the impacts of smartphone sensor
rotation angles, the result of various devices, and a long-
term study.

5.4.1 Universality
For a movement recognition system, the ability to generalize
to new users without retraining or adaptation can provide
a satisfactory user experience. To evaluate the universality
of CanalScan, we conduct leave-one-person-out-validation.
That is, we use data from nineteen participants for training
and data from one participant for testing. Fig. 18 illustrates
the behavior of the proposed system of all combinations.
We observe that 17 participants have recall higher than
90% and precision higher than 90%. CanalScan achieves
the average recall and precision of 91.41% and 91.58%,
respectively. These excellent results suggest CanalScan can
effectively work across different users. Furthermore, partic-
ipate 12 has relatively low performance. We carefully check
the recognition results of different tongue-jaw movements
from participate 12 and find that movement 1 contributes
the most to error. The study of this special case is left as
future work.
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Fig. 17. Overall recogni-
tion performance.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Participant

50

60

70

80

90

100

P
er

ce
nt

ag
e

(%
)

Recall Precision

Fig. 18. Performance of leave-one-person-out-
validation.

1 2 3 4 5
Session

50

60

70

80

90

100

P
er

ce
nt

ag
e

(%
)

Recall Precision

Fig. 19. Performance of leave-
one-session-out-validation.

120 130 140 150
Rotation Angle (degree)

50

60

70

80

90

100

P
er

ce
nt

ag
e

(%
)

Recall Precision

Fig. 20. Impact of rotation
angle.

5.4.2 Stability
To evaluate the stability of CanalScan against movement
inconsistency, we conduct leave-one-session-out-validation,
where data from one session are used for testing and the
remaining data for training. As shown in Fig. 19, the results
reach 94.35% average recall and 94.33% average precision
across sessions. The leave-one-session-out-validation results
show good agreement with the cross-validation results,
which confirms that CanalScan works effectively against
movement inconsistency.

5.4.3 Impact of Sensor Rotation Angle
We use the pre-trained classifier described in Section 5.3
to evaluate CanalScan’s robustness against different sensor
rotation angles. Whereas daily usage purposes, we test four
angles, i.e., 120 degrees, 130 degrees, 140 degrees, and
150 degrees. Fig. 20 shows the recognition results under
these four conditions. The recall results of four cases are
82.22%, 91.58%, 93.60%, and 88.31%. The precision of four
cases are 83.06%, 91.82%, 93.62%, and 87.71%, respectively.
Furthermore, it can be observed that when the angle is 140
degrees, CanalScan receives the highest recall and precision.
As participants place the smartphone outside the valid zone
of 130-140 degrees, the multi-path reflection in the ear canal
changes significantly, resulting in decreases in recall and
precision.

5.4.4 Impact of Device
CanalScan’s performance is related to the hardware of smart
devices. Therefore, we conduct cross-validation experiments
on data collected from four different devices. We implement
LIBAS to collect acoustic signals with iPhone X, iPhone 8,
HUAWEI Mate 9, and HUAWEI Mate 9pro. Specifically,
these smartphones are different in size and audio hardware.
Then, we compare the recall and precision across four de-
vices and show the result in Fig. 21. The results demonstrate
that CanalScan is highly effective with all devices. There is no
noticeable difference in their tongue-jaw movement recog-
nition results. This indicates that our system is compatible
with different mobile phone modules.

5.4.5 Long-Term Performance
Existing related approaches that send and receive acoustic
signals in the ear canal mainly focus on the static characteris-
tics of the ear canal shape. However, the static characteristics
can be greatly affected by the ear wax which is naturally
produced by the human body. Thus, these approaches do

not support long-term use. Our proposed system focuses on
dynamic characteristics: the direction, speed, and amount
of the ear canal wall movement. We conduct a long-term
experiment, where data collected in the first data collection
phase are used for training, and data collected one month
later for testing. Also, we conduct five-fold cross-validation
with data collected from two data collection phases. When
using data collected one month later for testing, the aver-
age recall is 92.26%, and the average precision is 92.18%.
Meanwhile, the cross-validation recall and precision of data
collected from two data collection phases show good per-
formance, reaching 94.06% and 93.64%, respectively. The
results suggest that a regular update of the training data set
of CanalScan enables high accurate tongue-jaw movement
recognition.

5.5 Key Algorithm Study

We evaluate the performance of movement segmentation,
tongue-jaw movement detection, data transformation, var-
ious classifiers, body movement noise identifier, and enve-
lope example selection.

5.5.1 Performance of Movement Segmentation
Under the direction of the computer mouse, we segment the
movement between the start and end points as the ground
truth. Then, we compare them with the segmentation re-
sults based on the dynamic threshold. Experiment results
show that 90% of the time difference between segments
and ground truth is less than 0.1s, which demonstrates the
effectiveness of the proposed method.

5.5.2 Performance of Tongue-jaw Movement Detection
By carefully checking the results of the SVDD classifier, we
found that 93.88% of the tongue-jaw movement is correctly
detected. While in the segments classified as tongue-jaw
movements, 91.93% of them truly belongs to the tongue-jaw
movement class, which shows that CanalScan can effectively
detect tongue-jaw movement. This result can be improved
by fusing other sensory data, which is part of our future
work.

5.5.3 Performance of Multi-path Reflection Instability Re-
duction
The proposed data transformation technique provides an
efficient mechanism for CanalScan to reduce the impacts of
ear canal shape diversity and sensor position difference on
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the received signals. We compare the leave-one-person-out
validation results without and after data transformation. As
shown in Fig. 22, when we do not perform data transfor-
mation, the average recognition recall is 69.35%, and the
average precision is 70.46%. The recall and precision of
participants with the worst results are both lower than 60%.
After data transformation, there is a significant increase in
recognition results with 91.41% average recall and 91.58%
average precision. The results demonstrate that data trans-
formation shows a high efficiency, which is the key to realize
accurate tongue-jaw movement recognition.

5.5.4 Impacts of Training Data Size and Classifier
We evaluate the performance of CanalScan under different
training data sizes by varying the training data size from
25% to 85%. The results show that the system could receive
higher recall and precision when the training data is more.
Then, we compare the performance of several highly used
classifiers, including Random Forest (RF), Decision Tree
(DT), k-Nearest Neighbor(kNN), radial basis function ker-
nel Support Vector Machine (SVM), Multi-layer Perceptron
Classifier (MLPC), and Naive Bayes (NB). All classifiers
are implemented with default values. As shown in Fig. 23,
RF and DT have better performance than other classifiers.
When using 85% data for training, RF achieves its best recall
and precision of 94.30% and 94.39%, respectively, and is
adopted in this work.

5.5.5 Performance of Body Movement Noise Identification
Body movement noise identification serves as a layer of
defense against envelope distortions. To evaluate the per-
formance of the body movement noise identifier, we ask
participants to record the acoustic reflections of tongue-
jaw movements in both stationary and moving states. After

TABLE 1
Body state category and activities.

State Category Activity
Stationary Sit still, stand still

Moving Sit in a car, stand in a bus, stand in the subway,
walk, eat, deep breath, ride a stationary bike.

carefully interviewed all participants, we summarize the
common usage scenarios of CanalScan in Table 1, which
covers different intensity levels of noise. Each activity is re-
peated by multiple participants and data are collected from
different days to include the slight changes in participants’
behaviors. We group the data of different activities into
stationary state and moving state. Five-fold cross-validation
is conducted through the proposed ELM-based method. As
our focus is mainly to learn the behavior of body movement
noise identification in detail, we compare its performance
with the different number of hidden nodes. Fig. 24 shows
the recall and precision results. We can observe that, with a
small number of nodes, the recall and precision are low.
As the number of nodes increases from 40 to 55, recall
and precision keep improving. Specifically, the recall and
precision reach 93.23% and 93.07% when using 55 hidden
nodes. Adding more hidden nodes does not help to further
boost the performance as the number of hidden nodes goes
beyond 55. This supports our choice of 55 neurons for ELM
in the experiments.

5.5.6 Performance of Envelope Example Selection

We conduct five-fold cross-validation to study the impact of
parameter Kd. Moreover, we randomly select three sets of
envelope examples as the baseline (denoted as BL1, BL2,
and BL3) and compare their performance in recognizing
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tongue and jaw movements with the template selected by
the proposed method. As shown in Fig. 25, three sets of
randomly selected examples obtain different recall and pre-
cision results, and the recall and precision are between 80%
to 90%. This confirms that envelop examples do influence
the recognition of tongue-jaw movements. Besides, when
Kd is set from 1 to 6, we can observe an interesting pattern
of alternating increase and decrease. As it is trivial that the
running time of the algorithm is directly proportional to the
value ofKd, we foundKd = 4 to be a good tradeoff between
the performance of the algorithm and its running time.
Nevertheless, when having sufficient computing power, we
suggest using Kd = 6 to get the best recognition results.

5.6 Usage Study in Real-Life Environments
In real-world usage, the user can deliberately avoid body
activities but cannot avoid the noise caused by the envi-
ronment. For example, when a user rides in a vehicle that
is moving may introduce noise into the collected signal. To
understand how well CanalScan can work in real life, we ask
6 participants to perform six tongue-jaw movements and
collect data in three conditions: standing still, standing in
a moving bus, and sitting in a moving car. These scenar-
ios are common and representative of scenarios containing
environmental noise. The classifier is trained as described
in Section 5.3. We report the detailed recognition results of
CanalScan under three different environments in Fig. 26. It
can be seen that standing still yields the highest recall and
precision, which are 94.71% and 94.91%, respectively. The
performance of sitting in a moving car is slightly worse,
with the recall decreases to 90.24%, and precision decreases
to 90.03%, demonstrating that CanalScan can bare slight mo-
tions. In terms of standing in a moving bus, body movement
obfuscates acoustic reflections in the ear canal, resulting in
81.90% recall and 81.68% precision. The results are accept-
able in real-life environments, but CanalScan would better
be used under static and slight motion states.

5.7 User Study
We are interested in the user experience of CanalScan.
We ask the participants to fill a System Usability Scale
(SUS) [44] questionnaire to gather feedback, which ranks
from 1 (strongly disagree) to 5 (strongly agree). The SUS
questionnaire has ten questions and proved to be a valuable
evaluation tool, being robust and reliable. Table 2 summa-
rizes the questions and the average scores gathered from
each participant. We can notice that positive statements
(question 1,3,5,7, and 9) have high scores around 4 and 5.
Beside, the negative statements (question 2,4,6,8, and 10)
have low scores around 1 and 2. The results demonstrate
that CanalScan offers good user experience and great practi-
cal usability.

6 DISCUSSION AND FUTURE WORK

As a new technology, CanalScan certainly leaves a number
of limitations to explore further. First, the design space
of tongue-jaw movements is large. In addition to the six
movements studied in this work, we also study many other
movements, such as jaw protrusion, jaw retrusion, tongue

TABLE 2
Results of user study questionnaire.

Item Question Score
1 I think that I would like to use this system frequently. 4.65
2 I find the system unnecessarily complex. 1.1
3 I think the system is easy to use. 4.55

4 I think that I would need the support of a technical
person to be able to use this system. 1.7

5 I find the various functions in this system are well
integrated. 4.3

6 I think there is too much inconsistency in this system. 1.3

7 I would imagine that most people would learn to use
this system very quickly. 4

8 I find the system very cumbersome to use. 1.85
9 I feel very confident using the system. 4.3

10 I need to learn a lot of things before I could get
going with this system. 1.1

moving along a clockwise path, and tongue moving along a
counterclockwise path. We find that CanalScan can achieve
precision and recall rates of over 90%, and the more complex
the trajectory of the tongue-jaw movements, the better the
system performs. We focus on six predefined tongue-jaw
movements so far as they are representative, common, and
well-accepted by users. Expanding to a larger movement set
or supporting user-defined movements is more attractive
and we recommend those with complex tongue and jaw
movement trajectories when choosing additional tongue-
jaw movements. Second, we only implement CanalScan
using smartphones. Today’s earphones usually integrate
in-ear microphones and speakers for a superior listening
experience. Such acoustic front-ends are very promising
to implement CanalScan. We are planning to implement
CanalScan with Active Noise Cancellation (ANC) earphones
to conduct more experiments. Last but not least, we have
not seriously evaluated CanalScan’s performance under var-
ious noise conditions. It is impractical to exhaust all usage
scenarios, and we conduct experiments at various noise
intensity levels instead. In particular, our experiments have
been conducted during intensive noise (i.e., walking, eating,
riding a stationary bike) and slight noise (i.e., sitting in
a car, standing in a bus, standing in the subway, deep
breathing). The experiments demonstrate that CanalScan is
promising to cope with a wide range of noise conditions.
We will extensively conduct experiments with more body
movements to gather more evaluation.

7 CONCLUSION

In this paper, we propose a non-intrusive tongue-jaw move-
ment recognition system, CanalScan. Our system only relies
on the commodity speaker and microphone mounted on
ubiquitous off-the-shelf devices (e.g., smartphones), which
sends an inaudible acoustic signal to the ear canal, then cap-
tures its multi-path reflections. By deriving unique patterns
of ear canal deformation caused by tongue-jaw movements,
CanalScan is capable of recognizing six tongue-jaw move-
ments. CanalScan adopts a set of novel signal processing
techniques. Specifically, to mitigate the impacts of various
relative positions and individual’s ear canal shape on multi-
path reflections, a sensor position detection method and
a data transformation method with movement examples
selection algorithm are introduced. Then, to remove noise
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and segment tongue-jaw movements, a body movement
noise filtering method and a dynamic segmentation method
are developed. Afterward, we extract twelve unique and
consistent features and adopt an RF-based classifier for
recognition. Extensive experiments with twenty participants
demonstrate that CanalScan reaches the goal of accurate,
robust, and user-independent recognition of six tongue-jaw
movements. However, the general methods proposed in
this work can be extended to other tongue-jaw movements
easily.
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