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Abstract—Human-machine interface based on tongue-jaw
movements has recently become one of the major technological
trends. However, existing schemes have several limitations, such
as requiring dedicated hardware and are usually uncomfortable
to wear. This paper presents CanalScan, a nonintrusive system
for tongue-jaw movement recognition using only commodity
speaker and microphone mounted on ubiquitous off-the-shelf
devices (e.g., smartphones). The basic idea is to send an acoustic
signal, then captures its reflections and derive unique patterns
of ear canal deformation caused by tongue-jaw movements.
A dynamic segmentation method with Support Vector Domain
Description is used to segment tongue-jaw movements. To combat
sensor position-sensitive deficiency and ear-canal-shape-sensitive
deficiency in multi-path reflections, we first design algorithms
to assist users in adjusting the acoustic sensors to the same
valid zone. Then we propose a data transformation mechanism
to reduce the impacts of diversities in ear canal shapes and
relative positions between sensors and the ear canal. CanalScan
explores twelve unique and consistent features and applies a
Random Forest classifier to distinguish tongue-jaw movements.
Extensive experiments with twenty participants demonstrate that
CanalScan achieves promising recognition for six tongue-jaw
movements, is robust against various usage scenarios, and can
be generalized to new users without retraining and adaptation.

I. INTRODUCTION

Being able to interact with the system naturally is becom-
ing ever more important in the field of Human-Computer
Interaction (HCI). In recent years, it has facilitated various
types of HCI technology (e.g., speech recognition and gesture
recognition). However, all of these manners are easy to be
eavesdropped and only subject to healthy users.

In addition, tongue and jaw movement can present rich
information with diverse motion combinations. Compared with
the above interaction manner, it is good for privacy due to the
hidden characteristic and allows interactions for those who
have language barrier or poor finger coordination. Therefore,
there is of great interest to develop a recognition algorithm for
tongue-jaw movement to create an alternative human-computer
interface (e.g., tongue-controlled wheelchairs [1], tongue-teeth
typing systems [2], and silent speech output systems [3]).

Existing tongue-jaw movement recognition methods can be
divided into three groups, which rely on cameras [4], oral
cavity devices [1], [5], and wearable devices [2], [6], [7].
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Fig. 1. Illustration of CanalScan.

These methods suffer from the following limitations: 1) for
vision based methods, the advantage of hiding interactions is
broken because only the out-of-mouth tongue movements can
be recognized for interaction. Besides, these methods also face
various issues on privacy, social awkwardness, and application
scenarios (e.g., light condition, orientation). 2) for oral cavity
device based methods, they not only suffer from obvious
hygiene and intrusion disadvantages, but also may impair
verbal communication and other oral functions. 3) for wearable
device based methods, they require dedicated hardware with
high cost, which makes them difficult to be adopted widely
(especially in developing counties).

The above limitations motivate us to design a nonintrusive
tongue-jaw movement recognition system, called CanalScan,
which uses speaker and microphone integrated into ubiquitous
off-the-shelf devices (e.g., smartphones) to detect tongue-jaw
movements. Users can use the system simply by pressing
the smartphone to their ears like making a phone call. The
basic idea emerged from our finding that different tongue-
jaw movements cause different amounts of movements of
the ear canal wall in anterior-posterior, superior-inferior, and
medial-lateral [8]. As illustrated in Fig. 1, the speaker and
microphone serve as an active sonar that sends an acoustic
signal into the ear canal and captures acoustic reflections.
As the ear canal wall moves upon tongue-jaw movements,
multi-path reflections interfere with each other, which leads to
reflections with strength corresponding to the direction, speed,
and intensity of the movement of the ear canal wall. These
reflections are decoded for tongue-jaw movement recognition.

Despite its simple idea, three major challenges underlie the
design of CanalScan:



1) Multi-path reflections are highly sensitive to ear canal
shape and the relative position between the smartphone
acoustic sensors and the ear canal, which makes it
intractable to extract reliable features for recognition. We
mainly through the effort of two sides to solve this. The
first is to design a sensor position detection method to
assist users in adjusting the smartphone acoustic sensors
to the same valid zone every time they collect acoustic
signals. The second is to design a data transformation
mechanism to reduce the impacts of ear canal shape
diversity and sensor position difference on the received
signals.

2) The presence of extra movements between tow consecu-
tive tongue-jaw movements, facial expressions, and head
movements are common in real-world usage. They intro-
duce jitter and pause similar to tongue-jaw movements
in the received multi-path reflections [7], [9], which is
challenging to distinguish. To address this, we segment
movements based on dynamic threshold generated by
a percentile measurement, and select tongue-jaw move-
ments leveraging Support Vector Domain Description
(SVDD) [10].

3) We observe that people exhibit different patterns for
the same tongue-jaw movement and perform movement
slightly differently from time to time. This makes it hard
for the system to realize robust and user-independent
recognition for tongue-jaw movements. To facilitate
user-independent recognition, enhance robustness, and
increase accuracy, we explore twelve kinds of features
that are robust to user behavior diversity and movement
inconsistency. Random Forest (RF) classifier is then
adopted for tong-jaw movement recognition.

Our main contributions are summarized as follows:

• To the best of our knowledge, we are the first to develop
a tongue-jaw movement-based human-computer interface
in off-the-shelf devices. We use only commodity speaker
and microphone to build an active sonar. By characteriz-
ing multi-path reflections induced by dynamic ear canal
deformation, we investigate new measurement for tongue-
jaw movement recognition.

• We design a set of novel techniques including a sen-
sor position detection method and multi-path instability
reduction method that overcome the ear-canal-shape-
sensitive deficiency and sensor-position-sensitive defi-
ciency in multi-path reflections, and a movement seg-
mentation method that accurately segments and selects
tongue-jaw movements from other interference move-
ments. Also, we explore twelve kinds of features and
adopt RF for final classification.

• We evaluate CanalScan with 20 participants extensively.
The results show that CanalScan achieves 94.84% recall
and 95.00% precision in tongue-jaw movement recogni-
tion. Results also show that CanalScan can generalize to
new users without retraining or adaptation and is robust
under various usage scenarios and environments.

II. RELATED WORK

Previous studies on tongue and jaw movement recognition
vary in sensing modalities and sensor placement. Tongible [4]
leverages RGB camera to track tongue positions. However,
only outside-mouth tongue movements can be detected, thus
limits its application scope. Tongue drive [1] extracts rich
tongue gestures by instrumenting the tongue with magnetic
piercings. Sahni et al. [3] track tongue and jaw motion by
tongue-mounted magnetic sensors with one headset mounted
magnetometer, combined with a proximity sensor in the ear.
TongueBoard [5] enables absolute position tracking of the
tongue by placing 124 capacitive touch sensors on the roof of
the mouth and holding a palate sensor in the mouth. However,
the use of intraoral sensors is inconvenient, uncomfortable,
and brings hygiene concerns. TYTH [2] uses the electroen-
cephalography sensor, the electromyography sensor, and the
miniature skin surface deformation sensor to identify tongue
movement. Tongue-n-Cheek [6] captures tongue gestures using
an array of radars integrated into helmets. TongueSee [11]
realizes high-fidelity tongue gesture recognition using EMG
signals from the surface of the skin. However, these techniques
require sophisticated and dedicated hardware and users to
wear noticeable sensors, which is socially awkward and might
attract unnecessary attention in public.

The ear canal, which reflects the mouth-related activities,
has drawn significant attention in recent years. Some prior
contributions have been made in capturing ear pressure sig-
nals using barometers [7], [12] and microphones [9], [13],
[14] embedded in earbuds to detect facial expressions, head
movements, and tongue movements. However, measuring ear
pressure changes requires to seal the ear canal, which can sig-
nificantly affect hearing. Meanwhile, electrodes [15], infrared
LEDs [16], and proximity sensors [17], which are placed
inside the ear canal, have been exploited to recognize facial
expressions and tongue movements. However, such dedicated
hardware is not always available and is not compatible with
off-the-shelf devices. Also, placing sensors inside the ear canal
is uncomfortable and brings safety concerns. So far, tongue-
jaw movement recognition through sensing in the ear canal
still lacks highly accurate, robust, and nonintrusive solutions.

Another aspect of related researches focuses on using ear
canal acoustic properties for authentication. These approaches
use modified earphones with microphones. The basic principle
is to send audible signals [18]–[21] or inaudible signals
[22] and derive static characteristics of the ear canal shape.
However, dynamic ear canal deformation is a relatively new
area. Existing static-pattern-based works can not be applied
directly because ear canal deformation always accompanies
by the rotation of earphone prototypes they built. The position
and direction change of the excitation signal will bring great
interference, making it difficult for existing works to achieve
high accuracy sensing. Moreover, [23] warns that these kinds
of devices might result in the collapse of the external ear canal.

Over the past few years, many acoustic-based activity
sensing systems have been developed on smartphones, such as
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Fig. 2. Illustration of six movements involving the tongue and jaw.

hand tracking [24], [25], driving behavior sensing [26], [27],
and breathing monitoring [28]. However, ear canal deforma-
tions are minute and have more subtle differences in acoustic
properties, leading to more challenges for accurate sensing.

Compared with the previous efforts, CanalScan only relies
on the built-in microphone and speaker on smartphones, does
not require additional sensors and modification. While using
CanalScan, a use hold the smartphone like making a phone
call, which is unobtrusive, nonintrusive, and user-friendly.
By analyzing dynamic acoustic properties of ear canal de-
formation, CanalScan achieves high accuracy in nonintrusive
tongue-jaw movement recognition.

III. OBSERVATIONS

The ear canal is a roughly S-shape elliptical cylinder with
a length of about 30 mm [29]. Ear canal shape and volume
change upon tongue and jaw movements. When an acoustic
signal is sent into the ear canal, ear canal deformations cause
variations in acoustic reflections. Tongue and jaw reaching out
to different areas cause different amounts of movements of ear
canal wall in anterior-posterior, superior-inferior, and medial-
lateral, which has been shown in studies such as [8], [15]–[17].
This motivates us to explore the feasibility of using acoustic
reflections to characterize different tongue-jaw movements.

To understand the relationship between ear canal deforma-
tion and multi-path reflections, we conduct experiments on
a smartphone that sends 16kHz continuous acoustic signals
and continuously collects acoustic reflections at 48kHz. We
recruit two volunteers to perform six tongue-jaw movements
illustrated in Fig. 2, respectively. These tongue-jaw movements
are performed in different areas of the oral cavity, and they
are composed of two stages: (i) the tongue starts from the
back of the teeth, lick over the teeth, reaches the front of the
teeth, and the jaw moves naturally with the movement of the
tongue. (ii) the tongue returns to the back of the teeth and
jaw returns to its original position. During experiments, we
ask volunteers to hold the smartphone like making a phone
call and align the top microphone and earpiece speaker with
the ear canal entrance. In particular, volunteer 1 rotates the
smartphone counterclockwise around the sensor-to-ear axis by
135 degrees and 140 degrees, then collects continuous reflec-
tions twice, respectively. Volunteer 2 rotates the smartphone
counterclockwise around the sensor-to-ear axis by 140 degrees
and collects continuous reflections twice.

We extract the multi-path reflection envelope in the time
window and illustrate examples of the vibration patterns of
six tongue-jaw movements in Fig. 3.
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Fig. 3. The reflection envelope of movement 1-6 in three conditions.

Feasibility: We can easily observe that each kind of tongue-
jaw movement has unique patterns in the reflection envelope,
such as the same number of peaks, the same or near positions
for peak, trough, and turning point. This demonstrates the
feasibility of characterizing different tongue-jaw movements
based on multi-path reflection from the ear canal.

Interference: Meanwhile, we can observe that two instances
collected from the same movement in the same situation are
slightly different in curve shape and signal amplitude. Also,
when volunteer 1 rotates the smartphone acoustic sensor at
different angles, envelopes from the same movement differ in
curve shapes and signal amplitudes, such as movement 3 and
4. Moreover, when two volunteers rotate the sensor at 140
degrees, the same movement can have different curve shapes
and signal amplitudes, such as movement 1, 3, and 5. The
results demonstrate the impacts of movement inconsistency,
acoustic sensor position difference, ear canal shape difference,
and user behavior diversity.

According to our experiments, the presence of peak and
trough is caused by changing movement directions of the
ear canal wall. The curve shape and signal amplitude are
related to ear canal shapes and sensor positions. Therefore,
to address ear canal shape diversity and relative position
difference between acoustic sensors and the ear canal, we need
to modify information related to ear canal shape and sensor
position (e.g., curve shape and peak amplitude) while keeping
motional information (e.g., number of peaks and peak/trough
position) unchanged.

IV. SYSTEM DESIGN

A. Overview

CanalScan utilizes off-the-shelf speaker and microphone
integrated into smart devices (e.g., smartphone) for tongue-
jaw movement recognition. Fig. 4 shows the overall design of
CanalScan, which mainly comprised of four models: Acoustic
Signal Collection, Tongue-jaw Movement Segmentation, Multi-
path Reflection Instability Reduction, and Tongue-jaw Move-
ment Recognition.

In Acoustic Signal Collection, the earpiece speaker and
top microphone of a smartphone serve as an active sonar,
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which generates inaudible acoustic signals and collects their
reflections. Sensor Position Detection is performed to monitor
the relative position between acoustic sensors and the ear canal
thus to assist users in placing the acoustic sensors in the same
valid zone every time they use CanalScan.

In Tongue-jaw Movement Segmentation, we first segment all
possible movement frames with a dynamic threshold. We then
use a pre-trained Support Vector Domain Description (SVDD)
[10] classifier to select real tongue-jaw movements from extra
movements and non-tongue-jaw movements.

During Multi-path Reflection Instability Reduction, envelope
segments of each tongue-jaw movement serve as input. We
first apply Dynamic Time Warping (DTW) and Gaussian
Mixture Model (GMM) to separate the input signal. We
then leverage Kullback-Leibler (KL) divergence to generate a
distance matrix that describes the similarity between Gaussian
components from the input signal and envelope examples.
Afterward, we select Gaussian components from examples that
are most similar to Gaussian components of the input signal
and generate a target vector. Finally, we transform the input
signal into a new signal with characteristics of the target vector
based on Minimum Mean Square Error (MMSE).

In Tongue-jaw Movement Recognition, User-independent
Feature Extraction extracts twelve statistic features unique
to each tongue-jaw movement and consistent across different
users. A Random Forest (RF) classifier is used to obtain a pre-
diction probability for each tongue-jaw movement. CanalScan
takes prediction with the highest probability as the recognized
tongue-jaw movement.

B. Acoustic Signal Collection

1) Acoustic Signal Selection: There are several considera-
tions in selecting the excitation acoustic signal. It should be
as inaudible as possible to avoid annoyance. Sounds above
16kHz are candidates because they are hard to hear for adults
over 25 [30]. Most smartphones support a sampling rate of
48kHz, so the excitation acoustic signal is restricted to below
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24kHz. However, speaker and microphone distortion at high
frequencies narrows our choices to below 17kHz [31]. To
enable CanalScan compatible with various smartphones, we
send 16kHz sound to overcome the frequency selectivity of
acoustic sensors and collect its reflection at 48kHz.

2) Sensor Position Detection: For reliable multi-path re-
flection collecting, two conditions need to be fulfilled. One is
to allow the sensor to collect effective multi-path reflection,
which has strength corresponding to the direction, speed, and
intensity of the movement of the ear canal wall. The other is
to minimize the relative position difference between the sensor
and the ear canal entrance every time acoustic signals are
collected. Note that the smartphone should be pressed on the
ear to avoid interference from the surrounding environment.
Thus, there needs no adjustment of the distance between the
acoustic sensor and the ear canal entrance.

Alignment Detection Most readily available smartphones
employ a slender earpiece speaker about 1cm long and mount
a smaller top microphone inside the earpiece. The ear canal
entrance of an adult is about the size of the speaker. Therefore,
the acoustic sensor should be placed in a valid zone to collect
effective multi-path reflection in the ear canal. In other words,
the sensor should be aligned with the ear canal. However, it
is very difficult to determine the relative position between the
ear canal entrance and the acoustic sensor.

We solve this by a simple but efficient mechanism. We
let users perform a pre-agreed tongue-jaw movement. If a
unique pattern presents in the collected reflection signal, we
consider that as aligned. Otherwise, we consider that as not
aligned. Specifically, movement 4 that involves larger jaw and
tongue motions is employed as the pre-agreed movement. We
determine whether the acoustic sensors are aligned with the ear
canal by checking whether the reflection envelope has more
than two peaks or troughs with prominence higher than 30%
of the maximum prominence of the highest peak and lowest
though, which is observed through experiments.

Rotation Angle Detection: To measure the angle of smart-
phone rotating around an axis, coordinate system conversion
is often required to address data variety caused by users
facing different directions. However, data conversion between
coordinate systems is time-consuming. Instead, we design a
lightweight algorithm to work in different facing directions.
Fig. 5 shows an example of the smartphone coordinate system,
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Fig. 8. Examples of extra movement, facial expression, head movement, and tongue-jaw movement.

sensor-to-ear-canal-axis, and rotation angles. We define the
intersection line of the X-Y plane and gravity-Z plane along
the smartphone’s bottom as the start direction of rotation.
We define the acoustic sensor rotating α degrees around the
sensor-to-ear-canal-axis, and the smartphone rotates β degrees
around its Z-axis. When the acoustic sensor is aligned with
the ear canal, the sensor-to-ear-canal-axis is parallel or nearly
parallel to the smartphone Z-axis. We can easily derive that α
equals to β, which is the angle between the starting direction
and the smartphone X-axis. Therefore, we now turn to the
problem of obtaining β. Fortunately, inertial measurement unit
mounted on modern smartphones provide easy access to such
tilt angle:

β = acctan(
gx
gy

) +
π

2
(1)

where gx and gy is the gravity component in X and Y axis.
Gravity is typically derived from the accelerometer where
the magnetometer and the gyroscope help remove the linear
acceleration from the data.

According to our experiment with 50 people, a comfortable
posture of holding the smartphone close to the ear canal (like
making a phone call) is to make the smartphone rotates 130-
140 degrees. By calculating the smartphone rotation angles,
we guide the users to rotate the smartphone at the same or
similar angle when collecting signals. Thus, we can minimize
the relative position difference between the acoustic sensor and
the ear canal during each collection and mitigate the impacts
of various relative positions on multi-path reflections.

C. Tongue-Jaw Movement Segmentation

Tongue-jaw movement segmentation is a two-step process:
the first step is to segment all candidate movements; the second
step is to select tongue-jaw movements from other movements.

1) Movement Segmentation: The tongue and jaw pause
for a very short while between two consecutive tongue-
jaw movements to felicitate segmentation. Intuitively, we can
segment movements by detecting a pause and a huge jitter
in the envelope signal. We make use of the fact that the
first derivatives of jitters are high, and the first derivatives
of pauses are low and relatively stable. The first derivative
that exceeds a certain threshold at a point is considered the
start of a movement, and that is below a certain threshold for
a while after a point is considered the end of a movement.
The threshold T must be sufficiently small to capture all
tongue-jaw movements but sufficiently large to avoid capturing

random noise in the collected signal. However, finding the
threshold suitable for everyone is extremely difficult due to
diversity in movement amplitude range and noise uncertainty.
Therefore, we determine a dynamic threshold by using a
percentile measurement procedure.

Given the absolute value of the first derivative of the
input signal, we first calculate its intensity distribution I(a),
which is weighted according to the scattering intensity of
signal strength a [32]. Then, the threshold T is calculated
as
∫ T
0
I(a) = A%. Fig. 7 shows an example of calculating

threshold T based on intensity distribution. We set A as 63
based on our experimental study.

2) Tongue-jaw Movement Detection: Extra movements of
tongue and jaw are often required when switching between
two consecutive tongue-jaw movements. In addition, facial
expressions, head movements, and other movements are com-
mon in real-world use. To avoid high computational costs and
misclassification, we only take real tongue-jaw movements for
further process and recognition.

Fig. 8 illustrates the envelope of extra movement between
two consecutive movements, facial expression, head move-
ment, and tongue-jaw movement, respectively. The blue dash
lines mark the start and end of each movement. A key obser-
vation is that tongue-jaw movements have more peaks, and the
peaks are sharper. This motivates us to discriminate six tongue-
jaw movements and other movements using a statistical-based
method. We first extract features to represent each segmented
movement, including kurtosis, standard derivation, length, and
the number of peaks. Then, we use a classifier to select
tongue-jaw movements. Since non-tongue-jaw movements are
unpredictable and training the classifier with limited samples
leads to limited accuracy, we employ a one-class classifier,
SVDD. We take six tongue-jaw movements as a whole to
train a tongue-jaw movement-class. SVDD determines the
boundary of the tongue-jaw movement-class and assigns a
sample to that class according to whether it falls within
or outside the boundary. After that, facial expressions, head
movements, extra movements, and other movements outside
the boundary are discarded, and tongue-jaw movements are
further processed and recognized by the following proposed
techniques. Specifically, SVDD receives 93.88% recall and
91.93% precision, which is described in Section V-E.



D. Multi-path Reflection Instability Reduction

Multi-path reflections are highly sensitive to ear canal shape
and the relative position between the smartphone acoustic
sensor and the ear canal. To overcome the instability in
multi-path reflection caused by these factors and facilitate
robust tongue-jaw movement recognition, we propose a data
transformation technique.

1) Design Guidelines: We aim to reduce pattern instability
through a transform function. Such a transformation process
involve three design guidelines:
• Data from the same tongue-jaw movement should be

more similar after transformation.
• Data from different tongue-jaw movements should be

distinct after transformation.
Based on the above goals and our discussion in Section III,
we aim to modify information related to ear canal shape
and sensor position (e.g., curve shape and peak amplitude)
while keeping motional information (e.g., number of peaks and
relative peak/trough position) unchanged. The basic idea is to
generate a representative target vector for each type of tongue-
jaw movement, then derive the statistical relations between
target vector and the collected data and finally transform the
collected signal into a new signal with characteristics of the
target vector.

2) Data Transformation Process: Fig. 9 illustrates the
process of data transformation. The envelope samples are
random selections of representative envelopes. We consider the
envelope of the newly collected data x and stored envelope
examples of six tongue-jaw movements ym,m = 1, 2...6 are
vectors with different lengths.

Step 1: We first adopt the DTW method to process them.
After that, x and ym are time-aligned.

Step 2: We then apply Gaussian Mixture Model (GMM)
to represent them as the sum of K multivariate Gaussian
function:

Px =
∑K
i=1 αiN (µi, σi), (2)

Pym
=
∑K
j=1 βjN (µj , σj), (3)

where N is the normal distribution with the constraints that∑K
i=1 αi = 1, αi > 0 and

∑K
j=1 βj = 1, βj > 0.

Step 3: Since we do not know what kind of tongue-jaw
movement is performed, we introduce a distance matrix to
find the most similar components in the stored templates.
Specifically, we adopt the Kullback–Leibler (KL) divergence
to measure the distance of two Gaussian components. Each
entry Di,j of the distance matrix is calculated as:

Di,j =
1

2
[KL(Nµi,σi

||Nµj ,σj
) +KL(Nµj ,σj

||Nµi,σi
)], (4)

where the KL divergence is defined as:

KL(Nµi,σi
||Nµj ,σj

) = log
σj
σi

+
(µi − µj)2 + σ2

i − σ2
j

2σ2
j

. (5)

Step 4: Then, we search the distance matrix to find K
components from the Gaussian distribution set that are most

similar to the K components from the collected data. In
our case, those with the minimum distance is considered
as the most similar components. We add up K components
in the form of GMM to obtain probability density of the
representative target vector y′:

Py′ =
∑K
i=1 γi{N (µj , σj)|argminDi,j}. (6)

By applying Bayes’s rule, the weight of each component is
defined as follows:

γi =
αiN (µi, σi)∑K
j=1 αjN (µj , σj)

. (7)

Step 5: We now turn to the problem of finding a transfor-
mation function to transform the collected data x into the
target vector y′. Motivated by speech transformation [33],
we introduce a transformation function F(x) assumed by the
Minimum Mean Square Error (MMSE) estimation:

F(x) = E(y′|x)

=

∫
y′P (x,y

′)

Px(x)
dy′,

(8)

where Px(x) is the probability density of x, which is modeled
by Equ (2). The joint probability density P(x,y

′) should be
modeled carefully to refine the description of the statistical
distribution of x and y′. Therefore, we apply GMM to model
the joint vector z = [xT ,y′T ]T . The choice of GMM is
based on its ability to provide a “soft classification”, and the
desired transformation relationship between the target vector
and the collected data only relies on their time index. The
two-dimensional joint probability density is defined by:

Pz =

K∑
i=1

ωiN (µi,Σi),

K∑
i=1

ωi = 1, ωi > 0, (9)

where mean µi and covariance matrix Σi defined by:

µi =

[
µx
i

µy′

i

]
, Σi =

[
cov(x,x) cov(x,y′)
cov(y′,x) cov(y′,y′)

]
, (10)

where cov is the covariance operator. To fit GMM with
the weights, means, and covariance matrix, we adopt the
Expectation Maximization (EM) algorithm.

Proceeding as before yields a transformation function from
Equ (8) in the following:

F(x) =
M∑
i=1

Py(Ci|x)[µy +
cov(y,x)

cov(x,x)
(x− µx)], (11)

in which Py(Ci|x) is the conditional probability that x
belongs to component Ci. Through the application of Bayes’s
rule, it is easily derived that Py(Ci|x) can by calculated using
Equ (7). Using more GMM mixture components can better
model the signal, but also cause high computational costs.
In our case, 12 GMM components are used. After processed
by data transformation, differences between data from the
same tongue-jaw movement are effectively reduced, and data
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Fig. 9. Illustration of data transformation process.

from different tongue-jaw movements and non-tongue-jaw
movements are still distinct.

Since this data transformation technology reduces the im-
pacts of ear canal shape diversity and phone position difference
on the reflection signal, it improves the average recall from
69.35% to 91.41%, and the average precision from 70.46% to
91.58%. Experiment details are described in Section V-E.

E. Tongue-Jaw Movement Recognition
1) Feature Extraction: Intuitively, we can recognize dif-

ferent tongue-jaw movements with similarity matching (e.g.,
DTW method). However, it is arduous to generate standard
templates for each type of tongue-jaw movement because
of the diversity of movements performed by different users.
Instead, we extract unique and consistent statistic features of
each type of tongue-jaw movement. The basic idea is to build
a database with profiles of each type of tongue-jaw movements
before classification, and use the database to train a classifier
to infer the performed tongue-jaw movement.

We extensively explore plenty of features and apply RF
classifier to rank these features by a feature importance feed-
back. Afterward, we select twelve kinds of features that con-
tribute most to recognize various tongue-jaw movements and
consistent across different users, including variance, absolute
energy, vectorized approximate entropy, autocorrelation, count
above/below mean, the first location of maximum/minimum,
linear least-squares regression, the mean over the absolute
differences between subsequent time series values, mass center
index, and energy ratio of ten chunks.

2) Tongue-Jaw Movement Classification: We employ Ran-
dom Forest (RF) to train a six-class classier to recognize
different types of tongue-jaw movements. We feed twelve
kinds of features extracted from reflection envelopes into the
RF classifier and obtain prediction probabilities for the input
data. Then we take prediction with the highest probability
as the recognized tongue-jaw movement. Although several
classifiers such as decision tree, support vector machine, and
k-nearest neighbor perform well in related works, we chose
RF because it has the best performance in our experimentally
study, which is presented in Section V-E.

V. EVALUATION

A. Implementation
We implement CanalScan to verify its performance in

recognizing tongue-jaw movements. In our proof-of-concept

implementation, we use LIBAS [34] to send acoustic signals
at 16kHz and receive the reflections at a sampling rate of
48kHz. LIBAS is a cross-platform framework, which simpli-
fies the development of acoustic-based applications. We pair
the sensing smartphone with Matlab by using LIBAS’s server-
client remote mode.

B. Experimental Setup

We recruit 20 adult participants (10 male and 10 female) for
evaluation. This study is conducted with the approval of our
institute’s IRB. All participants are healthy, right-handed, and
cleaned their ears before collecting experimental data. During
data collection, participants align the top microphone and
earpiece speaker with their ear canals and press the smartphone
tightly. To accommodate slight sensor position differences,
we encourage participants to rotate the smartphone 130-140
degrees. Participants are asked to respectively perform the six
tongue-jaw movements for 5 sessions, each session includes 10
rounds, and each round lasts 2-4 minutes. Between sessions,
every participant take a five minutes break. To understand the
performance of CanalScan against various issues, we ask par-
ticipants to collect data with various sensor rotation angles and
different devices. After the first phase of data collection, we
collect data from all participants one month later to validate the
long-term performance. To evaluate CanalScan’s performance
under different usage scenarios, we ask participants to collect
data in three common usage conditions: standing, sitting in
a moving car, and standing on a moving bus. The start and
end of each tongue-jaw movement are indicated by clicking a
computer mouse using their left hands. We use the following
metrics to evaluate CanalScan:

Confusion Matrix: Each row and column of the matrix rep-
resent the ground truth and the predicted results, respectively.
Each entry ci,j is the ratio of instances belonging to the ith

class predicted as the jth class to all instances belong to the
ith class.

Precision: the ratio of the instances correctly classified as
label A to all instances predicted as label A.

Recall: the ratio of the instances correctly classified as label
A to all instances belong to label A.

C. Overall Performance of Tongue-jaw Movement Recognition

We conduct five-fold cross-validation to evaluate the tongue-
jaw movement recognition performance of CanalScan. The
average recall and precision of CanalScan are 94.84% and
95.00%, respectively. The results demonstrate that CanalScan
achieves accurate recognition of tongue-jaw movements.
Fig. 10 shows the confusion matrix of the recognition results
of CanalScan. Each entry is the average result of five sessions
across 20 participants. The entries on the diagonal show the
average accuracy of recognizing each tongue-jaw movement,
which reaches 94.06%, 93.23%, 94.99%, 96.90%, 95.08%,
and 94.78%, respectively. We observe that movement 4 and 5
receive higher recall and precision. A possible reason is that
they involve more significant movements of the lower jaw,
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making the ear canal deformation reflections more distinguish-
able than other tongue-jaw movements.

D. Use Issue Study

We study the performance of CanalScan from many aspects,
including universality across users, stability against movement
inconsistency, the impacts of smartphone sensor rotation an-
gles, the result of various devices, and a long-term study.

1) Universality: To understand whether CanalScan can
generalize to new users without retaining or adaptation, we
conduct leave-one-person-out-validation. We use data from
one participant for testing and data from nineteen participants
for training. Evaluations of all combinations are shown in
Fig. 11. We observe that 17 participants have recall higher
than 90% and precision higher than 90%. And the average
recall and precision are 91.41%, and 91.58%, respectively.
These excellent results suggest CanalScan can effectively
work across different users. Participate 12 has relatively low
performance. We carefully check the recognition results of
different tongue-jaw movements from participate 12 and find
that movement 1 contributes the most to error. The study of
this special case is left as future work.

2) Stability: To evaluate the stability of CanalScan against
movement inconsistency, we conduct leave-one-session-out-
validation, where data from one session are used for testing
and the remaining data for training. As shown in Fig. 12,
the results reach 94.35% average recall and 94.33% average
precision across sessions. The leave-one-session-out-validation
results show good agreement with the cross-validation results,
confirm that CanalScan works effectively against movement
inconsistency.

3) Impact of Sensor Rotation Angle: We use the pre-trained
classifier described in Section V-C to evaluate CanalScan’s
robustness against different sensor rotation angles. Four angles
are tested, including 120 degrees, 130 degrees, 140 degrees,
and 150 degrees. Fig. 13 shows the recognition results under
these four conditions. The recall results of four cases are
82.22%, 91.58%, 93.60%, and 88.31%. The precision of four
cases are 83.06%, 91.82%, 93.62%, and 87.71%, respectively.
CanalScan receives the highest recall and precision at 140
degrees. As participants place the smartphone outside the valid
zone of 130-140 degrees, the multi-path reflection in the ear

canal changes significantly, resulting in decreases of recall and
precision.

4) Impact of Device: CanalScan’s performance is related to
the hardware of smart devices. Therefore, we conduct cross-
validation experiments on data collected from four different
devices. Specifically, we implement LIBAS to collect acoustic
signals with iPhone X, iPhone 8, HUAWEI Mate 9, and
HUAWEI Mate 9pro. These devices differ in size and audio
hardware. Fig. 14 shows the comparison of the recall and
precision across four devices. The results show that CanalScan
is highly effective with all devices. There is no noticeable
difference in their tongue-jaw movement recognition results.
This indicates that our system is compatible with different
mobile phone modules.

5) Long-Term Performance: Existing related approaches
that send and receive acoustic signals in the ear canal do not
support long-term use. They focus on the static characteristics
of the ear canal shape. However, ear wax, naturally produced
by the human body, can greatly affect the static characteristics.
Our proposed system focuses on dynamic characteristics: the
direction, speed, and amount of the ear canal wall movement.
We conduct a long-term experiment, where data collected in
the first data collection phase are used for training, and data
collected one month later for testing. Also, we conduct a
five-fold-cross-validation with data collected from two data
collection phases. When using data collected one month later
for testing, the average recall is 92.26%, and the average
precision is 92.18%. Meanwhile, the cross-validation recall
and precision of data collected from two data collection
phases show good performance, reaching 94.06% and 93.64%,
respectively. The results suggest a regular update of the
training data set of CanalScan enables high accurate tongue-
jaw movement recognition.

E. Key Algorithm Study

We evaluate the performance of movement segmentation,
tongue-jaw movement detection, data transformation, and var-
ious classifiers.

1) Performance of Movement Segmentation: We segment
the movement between the start and end points indicated by
the computer mouse and compare them with the segmentation
results based on the dynamic threshold. Experiment results
show that 90% of the time difference between segments
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and ground truth is less than 0.1s, which demonstrates the
effectiveness of the proposed method.

2) Performance of Tongue-jaw Movement Detection: By
carefully checking the results of SVDD classifier, we found
that 93.88% of the tongue-jaw movement is correctly detected.
While in the segments classified as tongue-jaw movements,
91.93% of them truly belongs to the tongue-jaw movement
class, which shows that CanalScan can effectively detect
tongue-jaw movement. This result can be improved by fusing
other sensory data, which is part of our future work.

3) Performance of Multi-path Reflection Instability Reduc-
tion: The proposed data transformation technique provides an
efficient mechanism for CanalScan to reduce the impacts of
ear canal shape diversity and sensor position difference on the
received signals. Fig. 15 compares the leave-one-person-out
validation results without and after data transformation. When
we do not perform data transformation, the average recognition
recall is 69.35%, and the average precision is 70.46%. The
recall and precision of participants with the worst results are
both lower than 60%. After data transformation, we observe a
significant increase in recognition results, which reach 91.41%
average recall and 91.58% average precision. Form the results,
data transformation shows high efficiency and is the key to
realize accurate tongue-jaw movement recognition.

4) Impacts of Training Data Size and Classifier: We first
compare the impact of training data size by varying the
training data size from 25% to 85%. We find that with
more training data, the system could receive higher recall
and precision. Then, we compare the performance of several
highly used classifier including Random Forest (RF), Decision
Tree (DT), k-Nearest Neighbor(kNN), radial basis function
kernel Support Vector Machine (SVM), Multi-layer Perceptron
Classifier (MLPC), and Naive Bayes (NB), All classifiers are
implemented with dealt values. Fig. 16 shows the tongue-
jaw movement recognition performance of different classifiers.
We can observe that RF and DT have better performance
than other classifiers. When using 85% data for training,
RF achieves its best recall of 94.30% and best precision
of 94.39%. Since RF classifier outperforms than the other
classifiers, we employ RF to recognize different tongue-jaw
movements.

F. Usage Scenarios

To validate if CanalScan can work well in various usage
scenarios, we ask the participants to collect data in three
conditions: standing still, standing on a moving bus, and sitting
in a moving car. The classifier is trained as described in Sec-
tion V-C. The recognition results of six tongue-jaw movements
are shown in Fig. 17. Standing still yields the highest recall
and precision, which are 94.71% and 94.91%, respectively.
The performance of sitting in a moving car is slightly worse.
The recall decreases to 90.24%, and precision decreases to
90.03%, which is acceptable in real environments. In terms of
standing on a moving bus, body vibration obfuscates acoustic
reflections in the ear canal, resulting in 81.90% recall and
81.68% precision.

VI. CONCLUSION

In this paper, we propose a nonintrusive tongue-jaw move-
ment recognition system, CanalScan. Our system only relies
on commodity speaker and microphone mounted on ubiqui-
tous off-the-shelf devices (e.g., smartphones), which sends an
inaudible acoustic signal to the ear canal, then capture its
multi-path reflections. By deriving unique patterns of ear canal
deformation caused by tongue-jaw movements, CanalScan is
capable of recognizing six tongue-jaw movements. CanalScan
adopts a set of novel signal processing techniques. Exten-
sive experiments with twenty participants demonstrate that
CanalScan reaches the goal of accurate, robust, and user-
independent recognition of six tongue-jaw movements. How-
ever, the general methods proposed in this work can be
extended to other tongue-jaw movements easily.

CanalScan still has limitations and spaces to improve.
Firstly, CanalScan currently focuses on six tongue-jaw move-
ments. To support more tongue-jaw movements for more
complex applications, extensions of proposed methods (such
as different classification methods or advanced features) can be
further explored. Secondly, the proposed data transformation
method is the most time-consuming step in CanalScan. Further
investigation to reduce its computational cost can improve the
overall latency of recognition. Thirdly, CanalScan is currently
implemented on smartphones. We will further evaluate its
performance with other wearable devices such as a headset,
which may expand the applications to wider ranges.
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